With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article
Jonas Kusch; Graham W. Alldredge; Martin Frank
Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme
SMAI-Journal of computational mathematics, 5 (2019), p. 23-51
Article PDF
Class. Math.: 35L65, 35R60, 65M08
Keywords: uncertainty quantification, conservation laws, maximum principle, moment system, hyperbolic, oscillations


Using standard intrusive techniques when solving hyperbolic conservation laws with uncertainties can lead to oscillatory solutions as well as nonhyperbolic moment systems. The Intrusive Polynomial Moment (IPM) method ensures hyperbolicity of the moment system while restricting oscillatory over- and undershoots to specified bounds. In this contribution, we derive a second-order discretization of the IPM moment system which fulfills the maximum principle. This task is carried out by investigating violations of the specified bounds due to the errors from the numerical optimization required by the scheme. This analysis gives weaker conditions on the entropy that is used, allowing the choice of an entropy which enables choosing the exact minimal and maximal value of the initial condition as bounds. Solutions calculated with the derived scheme are nonoscillatory while fulfilling the maximum principle. The second-order accuracy of our scheme leads to significantly reduced numerical costs.


[1] G. Alldredge, C. D Hauck & A. L. Tits, “High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem”, SIAM Journal on Scientific Computing 34 (2012) no. 4, p. B361-B391  MR 2970411
[2] G. W. Alldredge, C. D. Hauck, D. P. OĹeary & A. L. Tits, “Adaptive change of basis in entropy-based moment closures for linear kinetic equations”, Journal of Computational Physics 258 (2014), p. 489-508
[3] J. B. Bell, C. N. Dawson & G. R. Shubin, “An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions”, Journal of Computational Physics 74 (1988) no. 1, p. 1-24
[4] C. Canuto & A. Quarteroni, “Approximation results for orthogonal polynomials in Sobolev spaces”, Mathematics of Computation 38 (1982) no. 157, p. 67-86  MR 637287
[5] K. M Case & P. F. Zweifel, Linear transport theory, Addison-Wesley Pub. Co., 1967  MR 225547
[6] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Reviews of modern physics 15 (1943) no. 1, p. 1-89
[7] P. Colella, “Multidimensional upwind methods for hyperbolic conservation laws”, Journal of Computational Physics 87 (1990) no. 1, p. 171-200  MR 1043308
[8] B. Després, G. Poëtte & D. Lucor, Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method, Springer International Publishing, 2013, p. 105-149  MR 3202523
[9] B. Dubroca & A. Klar, “Half-moment closure for radiative transfer equations”, Journal of Computational Physics 180 (2002) no. 2, p. 584-596
[10] C. K. Garrett, C. Hauck & J. Hill, “Optimization and large scale computation of an entropy-based moment closure”, Journal of Computational Physics 302 (2015), p. 573-590  MR 3404536
[11] R. G Ghanem & P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover, 2003  MR 1083354
[12] D. Gottlieb & D. Xiu, “Galerkin method for wave equations with uncertain coefficients”, Commun. Comput. Phys 3 (2008) no. 2, p. 505-518
[13] S. Gottlieb, C.-W. Shu & E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM review 43 (2001) no. 1, p. 89-112  MR 1854647
[14] J.-L. Guermond, M. Nazarov, B. Popov & Y. Yang, “A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations”, SIAM Journal on Numerical Analysis 52 (2014) no. 4, p. 2163-2182
[15] C. Hauck & R. McClarren, “Positive $P_N$ Closures”, SIAM Journal on Scientific Computing 32 (2010) no. 5, p. 2603-2626
[16] C. D. Hauck, “High-order entropy-based closures for linear transport in slab geometry”, Commun. Math. Sci 9 (2011) no. 1, p. 187-205
[17] H. Holden & N. H. Risebro, Front tracking for hyperbolic conservation laws 152, Springer, 2015  MR 3443431
[18] J. Kusch, “Uncertainty Quantification for Hyperbolic Equations”, RWTH Aachen University (2015), p. 1-23
[19] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag Basel, 1992
[20] R. J. LeVeque, Nonlinear conservation laws and finite volume methods, Computational methods for astrophysical fluid flow, Springer, 1998, p. 1–159
[21] C. D. Levermore, “Moment closure hierarchies for kinetic theories”, Journal of Statistical Physics 83 (1996) no. 5-6, p. 1021-1065
[22] E. E. Lewis & W. F. Miller, Computational Methods of Neutron Transport, John Wiley and Sons, Inc., New York, NY, 1984
[23] X.-D. Liu, “A maximum principle satisfying modification of triangle based adapative stencils for the solution of scalar hyperbolic conservation laws”, SIAM journal on numerical analysis 30 (1993) no. 3, p. 701-716
[24] X.-D. Liu & S. Osher, “Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I”, SIAM Journal on Numerical Analysis 33 (1996) no. 2, p. 760-779  MR 1388497
[25] G. Poëtte, B. Després & D. Lucor, “Uncertainty quantification for systems of conservation laws”, Journal of Computational Physics 228 (2009) no. 7, p. 2443-2467  MR 2501693
[26] G. Poëtte, B. Després & D. Lucor, “Treatment of uncertain material interfaces in compressible flows”, Computer Methods in Applied Mechanics and Engineering 200 (2011) no. 1, p. 284-308
[27] G. Poëtte, B. Després & D. Lucor, Uncertainty propagation for systems of conservation laws, high order stochastic spectral methods, Spectral and High Order Methods for Partial Differential Equations, Springer, 2011, p. 293–305
[28] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Oxford, 1973
[29] C.-W. Shu, “Total-variation-diminishing time discretizations”, SIAM Journal on Scientific and Statistical Computing 9 (1988) no. 6, p. 1073-1084  MR 963855
[30] N. Wiener, “The homogeneous chaos”, American Journal of Mathematics 60 (1938) no. 4, p. 897-936
[31] D. Xiu & G. Em Karniadakis, “Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos”, Computer Methods in Applied Mechanics and Engineering 191 (2002) no. 43, p. 4927-4948
[32] X. Zhang & C.-W. Shu, “On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes”, Journal of Computational Physics 229 (2010) no. 23, p. 8918-8934  MR 2725380
[33] X. Zhang & C.-W. Shu, “Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2011)