With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article | Next article
Nicolas Therme
A class of robust numerical schemes to compute front propagation
SMAI-Journal of computational mathematics, 4 (2018), p. 375-397, doi: 10.5802/smai-jcm.39
Article PDF
Class. Math.: 35F21, 65N08, 65N12
Keywords: Finite volumes, Hamilton-Jacobi, Stability, Convergence


In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent and monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.


[1] R. Abgrall, “Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes”, Comm. Pure Appl. Math. 49 (1996) no. 12, p. 1339-1373 Article
[2] S. Augoula & R. Abgrall, “High order numerical discretization for Hamilton-Jacobi equations on triangular meshes”, J. Sci. Comput. 15 (2000) no. 2, p. 197-229 Article
[3] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications] 17, Springer-Verlag, Paris, 1994
[4] G. Barles & P. E. Souganidis, “Convergence of approximation schemes for fully nonlinear second order equations”, Asymptotic Anal. 4 (1991) no. 3, p. 271-283
[5] T. J. Barth & J. A. Sethian, “Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains”, J. Comput. Phys. 145 (1998) no. 1, p. 1-40 Article
[6] S. Bryson & D. Levy, “High-order central WENO schemes for multidimensional Hamilton-Jacobi equations”, SIAM J. Numer. Anal. 41 (2003) no. 4, p. 1339-1369 (electronic) Article
[7] C. Chalons, M. Girardin & S. Kokh, “An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes”, Journal of Computational Physics 335 (2017), p. 885 -904 Article
[8] P. G. Ciarlet, Basic Error Estimates for Elliptic Problems, in P. Ciarlet, J.L. Lions, ed., Handbook of Numerical Analysis, Volume II, North Holland, 1991, p. 17–351
[9] M. G. Crandall & P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 277 (1983) no. 1, p. 1-42 Article
[10] M. G. Crandall & P.-L. Lions, “Two approximations of solutions of Hamilton-Jacobi equations”, Math. Comp. 43 (1984) no. 167, p. 1-19 Article
[11] C. M. Dafermos, Hyperbolic conservation laws in continuum physics., Berlin: Springer, 2016 Article
[12] S. Dellacherie, J. Jung, P. Omnes & P.-A. Raviart, “Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system.”, Math. Models Methods Appl. Sci. 26 (2016) no. 13, p. 2525-2615 Article
[13] R. Eymard, T. Gallouët & R. Herbin, “Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces”, IMA J. Numer. Anal. 30 (2010) no. 4, p. 1009-1043 Article
[14] D. Grapsas, Schémas à mailles décalés pour des modèles d’écoulements compressible réactifs, Ph. D. Thesis, Université Aix-Marseille, 2018
[15] D. Grapsas, R. Herbin, W. Kheriji & J.-C. Latché, “An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations”, SMAI Journal of Computational Mathematics 2 (2016), p. 51-97
[16] F.H. Harlow & A.A. Amsden, “Numerical Calculation of Almost Incompressible Flow”, Journal of Computational Physics 3 (1968), p. 80-93
[17] F.H. Harlow & A.A. Amsden, “A Numerical Fluid Dynamics Calculation Method for All Flow Speeds”, Journal of Computational Physics 8 (1971), p. 197-213
[18] F.H. Harlow & J.E. Welsh, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Physics of Fluids 8 (1965), p. 2182-2189
[19] R. Herbin, W. Kheriji & J.-C. Latché, “Staggered schemes for all speed flows.”, ESAIM, Proc. 35 (2012), p. 122-150 Article
[20] R. Herbin, W. Kheriji & J.-C. Latché, “On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations”, ESAIM Math. Model. Numer. Anal. 48 (2014) no. 6, p. 1807-1857 Article
[21] R. Herbin, J.-C. Latché & T. T. Nguyen, Explicit staggered schemes for the compressible Euler equations, Applied mathematics in Savoie—AMIS 2012: Multiphase flow in industrial and environmental engineering, ESAIM Proc. 40, EDP Sci., Les Ulis, 2013, p. 83–102 Article
[22] IRSN, “P$^{2}$REMICS: Computational Fluid Dynamics software for the simulation of dispersion and explosion”, https://gforge.irsn.fr/gf/project/p2remics
[23] G. Kossioris, Ch. Makridakis & P. E. Souganidis, “Finite volume schemes for Hamilton-Jacobi equations”, Numer. Math. 83 (1999) no. 3, p. 427-442 Article
[24] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982
[25] S. Osher & J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations”, J. Comput. Phys. 79 (1988) no. 1, p. 12-49 Article
[26] S. Osher & C.-W. Shu, “High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations”, SIAM J. Numer. Anal. 28 (1991) no. 4, p. 907-922 Article
[27] Y. Penel, S. Dellacherie & B. Després, “Coupling strategies for compressible-low Mach number flows.”, Math. Models Methods Appl. Sci. 25 (2015) no. 6, p. 1045-1089 Article
[28] L. Piar, F. Babik, R. Herbin & J.-C. Latché, “A formally second-order cell centred scheme for convection-diffusion equations on general grids”, Internat. J. Numer. Methods Fluids 71 (2013) no. 7, p. 873-890 Article
[29] S. Serna & J. Qian, “Fifth-order weighted power-ENO schemes for Hamilton-Jacobi equations”, J. Sci. Comput. 29 (2006) no. 1, p. 57-81 Article
[30] J. A. Sethian & A. Vladimirsky, “Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes”, Proc. Natl. Acad. Sci. USA 97 (2000) no. 11, p. 5699-5703 Article
[31] P. E. Souganidis, “Approximation schemes for viscosity solutions of Hamilton-Jacobi equations”, J. Differential Equations 59 (1985) no. 1, p. 1-43 Article
[32] J. Yan & S. Osher, “A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations”, J. Comput. Phys. 230 (2011) no. 1, p. 232-244 Article