With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article | Next article
Dionysis Grapsas; Raphaèle Herbin; Walid Kheriji; Jean-Claude Latché
An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations
SMAI-Journal of computational mathematics, 2 (2016), p. 51-97, doi: 10.5802/smai-jcm.9
Article PDF
Class. Math.: 65M08, 76N15, 65M12, 76N19
Keywords: Compressible Navier-Stokes equations, pressure correction schemes, finite volumes, MAC scheme, finite elements.

Abstract

In this paper we present a pressure correction scheme for the compressible Navier-Stokes equations. The space discretization is staggered, using either the Marker-And-Cell (MAC) scheme for structured grids, or a nonconforming low-order finite element approximation for general quandrangular, hexahedral or simplicial meshes. For the energy balance equation, the scheme uses a discrete form of the conservation of the internal energy, which ensures that this latter variable remains positive; this relation includes a numerical corrective term, to allow the scheme to compute correct shock solutions in the Euler limit. The scheme is shown to have at least one solution, and to preserve the stability properties of the continuous problem, irrespectively of the space and time steps. In addition, it naturally boils down to a usual projection scheme in the limit of vanishing Mach numbers. Numerical tests confirm its potentialities, both in the viscous incompressible and Euler limits.

Bibliography

[1] H. Bijl & P. Wesseling, “A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates”, Journal of Computational Physics 141 (1998), p. 153-173 Article |  MR 1619651 |  Zbl 0918.76054
[2] F. Boyer, F. Dardalhon, C. Lapuerta & J.-C. Latché, “Stability of a Crank-Nicolson pressure correction scheme based on staggered discretizations”, International Journal for Numerical Methods in Fluids 74 (2014), p. 34-58 Article |  MR 3146663
[3] CALIF3S, “A software components library for the computation of reactive turbulent flows”, https://gforge.irsn.fr/gf/project/calif3s
[4] V. Casulli & D. Greenspan, “Pressure Method for the Numerical Solution of Transient, Compressible Fluid Flows”, International Journal for Numerical Methods in Fluids 4 (1984), p. 1001-1012 Article |  Zbl 0549.76050
[5] P. G. Ciarlet, Handbook of Numerical Analysis Volume II : Finite Elements Methods – Basic Error Estimates for Elliptic Problems, in P. Ciarlet, J.L. Lions, ed., Handbook of Numerical Analysis, Volume II, North Holland, 1991, p. 17–351  MR 1115235 |  Zbl 0864.65001
[6] S. Clain, S. Diot & R. Loubère, “A high-order finite volume method for systems of conservation laws – Multi-dimensional Optimal Order Detection (MOOD)”, Journal of Computational Physics 230 (2011), p. 4028-4050 Article |  MR 2783831 |  Zbl 1218.65091
[7] B. Cockburn & C.-W. Shu, “The Runge-Kutta Discontinuous Galerkin method for conservation laws V – Multidimensional systems”, Journal of Computational Physics 141 (1998), p. 199-224 Article |  MR 1619652 |  Zbl 0920.65059
[8] P. Colella & K. Pao, “A projection method for low speed flows”, Journal of Computational Physics 149 (1999), p. 245-269 Article |  MR 1672739 |  Zbl 0935.76056
[9] M. Crouzeix & P.A. Raviart, “Conforming and nonconforming finite element methods for solving the stationary Stokes equations”, RAIRO Série Rouge 7 (1973), p. 33-75 Numdam |  MR 343661 |  Zbl 0302.65087
[10] F. Dardalhon, J.-C. Latché & S. Minjeaud, “Analysis of a projection method for low-order non-conforming finite elements”, IMA Journal of Numerical Analysis 33 (2013), p. 295-317 Article |  MR 3020959
[11] P. Drábek & J. Milota, Methods of Nonlinear Analysis, Birkhäuser Advanced Texts, Basel Lehrbücher, 2007  MR 2323436 |  Zbl 1176.35002
[12] R. Eymard, T. Gallouët & R. Herbin, Finite Volume Methods, in P. Ciarlet, J.L. Lions, ed., Handbook of Numerical Analysis, Volume VII, North Holland, 2000, p. 713–1020  Zbl 0981.65095
[13] L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta & J.-C. Latché, Staggered discretizations, pressure correction schemes and all speed barotropic flows, in Finite Volumes for Complex Applications VI - Problems & Perspectives - Prague, Czech Republic, Springer, 2011, p. 39-56  MR 2882362 |  Zbl 1246.76094
[14] L. Gastaldo, R. Herbin & J.-C. Latché, “A discretization of the phase mass balance in fractional step algorithms for the drift-flux model”, IMA Journal of Numerical Analysis 31 (2011), p. 116-146 Article |  MR 2755939
[15] J.-L. Guermond & L. Quartapelle, “A Projection FEM for Variable Density Incompressible Flows”, Journal of Computational Physics 165 (2000), p. 167-188 Article |  MR 1795396 |  Zbl 0994.76051
[16] J.L. Guermond, R. Pasquetti & B. Popov, “Entropy viscosity method for nonlinear conservation laws”, Journal of Computational Physics 230 (2011), p. 4248-4267 Article |  MR 2787948 |  Zbl 1220.65134
[17] F.H. Harlow & A.A. Amsden, “Numerical Calculation of Almost Incompressible Flow”, Journal of Computational Physics 3 (1968), p. 80-93 Article |  Zbl 0172.52903
[18] F.H. Harlow & A.A. Amsden, “A numerical fluid dynamics calculation method for all flow speeds”, Journal of Computational Physics 8 (1971), p. 197-213 Article |  Zbl 0221.76011
[19] F.H. Harlow & J.E. Welsh, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Physics of Fluids 8 (1965), p. 2182-2189 Article |  Zbl 1180.76043
[20] R. Herbin, W. Kheriji & J.-C. Latché, “On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations.”, Mathematical Modelling and Numerical Analysis 48 (2014), p. 1807-1857 Article |  MR 3342164 |  Zbl 1304.35519
[21] R. Herbin & J.-C. Latché, “Kinetic energy control in the MAC discretisation of the compressible Navier-Stokes equations”, International Journal of Finite Volumes 7 (2010)  MR 2753586
[22] R. Herbin, J.-C. Latché & T.T. Nguyen, “On some consistent explicit staggered schemes for the shallow water and Euler equations.”, under revision (2016)
[23] R. Herbin, J.-C. Latché & C. Zaza, “A cell-centered pressure correction scheme for the compressible Euler equations”, under revision (2016)
[24] R.I. Issa, “Solution of the Implicitly Discretised Fluid Flow Equations by Operator Splitting”, Journal of Computational Physics 62 (1985), p. 40-65 Article |  MR 825890 |  Zbl 0619.76024
[25] R.I. Issa, A.D. Gosman & A.P. Watkins, “The Computation of Compressible and Incompressible Recirculating Flows by a Non-iterative Implicit Scheme”, Journal of Computational Physics 62 (1986), p. 66-82 Article |  MR 825891 |  Zbl 0575.76008
[26] K.C. Karki & S.V. Patankar, “Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations”, AIAA Journal 27 (1989), p. 1167-1174 Article
[27] W. Kheriji, Méthodes de correction de pression pour les équations de Navier-Stokes compressibles, Thèse de Mathématiques Appliquées, Université de Provence, 2011
[28] W. Kheriji, R. Herbin & J.-C. Latché, “Pressure correction staggered schemes for barotropic monophasic and two-phase flows”, Computers & Fluids 88 (2013), p. 524-542 Article |  MR 3131211
[29] A. Kurganov & E. Tadmor, “Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers”, Numerical Methods for Partial Differential Equations 18 (2002), p. 584-608 Article |  MR 1919599 |  Zbl 1058.76046
[30] N. Kwatra, J. Su, J.T. Grétarsson & R. Fedkiw, “A method for avoiding the acoustic time step restriction in compressible flow”, Journal of Computational Physics 228 (2009), p. 4146-4161 Article |  MR 2524514 |  Zbl 1273.76356
[31] B. Larrouturou, “How to Preserve the Mass Fractions Positivity when Computing Compressible Multi-Component Flows”, Journal of Computational Physics 95 (1991), p. 59-84 Article |  MR 1112315 |  Zbl 0725.76090
[32] P. Lax & X.-D. Liu, “Solution of two-dimensional Riemann problems of gas dynamics by positive schemes”, SIAM Journal on Scientific Computing 19 (1998), p. 319-340 Article |  MR 1618863 |  Zbl 0952.76060
[33] C. Liu & N.J. Walkington, “Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity”, SIAM Journal on Numerical Analysis 45 (2007), p. 1287-1304 Article |  MR 2318813 |  Zbl 1138.76048
[34] J.J. McGuirk & G.J. Page, “Shock capturing using a pressure-correction method”, AIAA Journal 28 (1990), p. 1751-1757 Article
[35] S. Minjeaud, “An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model”, Numerical Methods for Partial Differential Equations 29 (2013), p. 584-618 Article |  MR 3022900
[36] K. Nerinckx, J. Vierendeels & E. Dick, “Mach-uniformity through the coupled pressure and temperature correction algorithm”, Journal of Computational Physics 206 (2005), p. 597-623 Article |  Zbl 1120.76300
[37] K. Nerinckx, J. Vierendeels & E. Dick, “A Mach-uniform algorithm: coupled versus segregated approach”, Journal of Computational Physics 224 (2007), p. 314-331 Article |  MR 2322273 |  Zbl 1261.76022
[38] L. Piar, F. Babik, R. Herbin & J.-C. Latché, “A formally second order cell centered scheme for convection-diffusion equations on general grids”, International Journal for Numerical Methods in Fluids 71 (2013), p. 873-890 Article |  MR 3019178
[39] R. Rannacher & S. Turek, “Simple nonconforming quadrilateral Stokes element”, Numerical Methods for Partial Differential Equations 8 (1992), p. 97-111 Article |  MR 1148797 |  Zbl 0742.76051
[40] M. Schäfer & S. Turek, Benchmark Computations of Laminar Flow Around a Cylinder, Notes on Numerical Fluid Mechanics 52, Vieweg, 1996  Zbl 0874.76070
[41] C.W. Schulz-Rinne, J.P. Collins & H.M. Glaz, “Numerical solution of the Riemann problem for two-dimensional gas dynamics”, SIAM Journal on Scientific Computing 14 (1993), p. 1394-1414 Article |  MR 1241592 |  Zbl 0785.76050
[42] D.R. Van der Heul, C. Vuik & P. Wesseling, “Stability Analysis of Segregated Solution Methods for Compressible Flow”, Applied Numerical Mathematics 38 (2001), p. 257-274 Article |  MR 1847066 |  Zbl 1017.76065
[43] D.R. Van der Heul, C. Vuik & P. Wesseling, “A conservative pressure-correction method for flow at all speeds”, Computers & Fluids 32 (2003), p. 1113-1132 Article |  MR 1966263 |  Zbl 1046.76033
[44] J.P. Van Dormaal, G.D. Raithby & B.H. McDonald, “The Segregated Approach to Predicting Viscous Compressible Fluid Flows”, Transactions of the ASME 109 (1987), p. 268-277
[45] D. Vidović, A. Segal & P. Wesseling, “A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids”, Journal of Computational Physics 217 (2006), p. 277-294 Article |  MR 2260602 |  Zbl 1101.76037
[46] C. Wall, C.D. Pierce & P. Moin, “A Semi-implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows”, Journal of Computational Physics 181 (2002), p. 545-563 Article |  MR 1927401 |  Zbl 1178.76264
[47] I. Wenneker, A. Segal & P. Wesseling, “A Mach-Uniform Unstructured Staggered Grid Method”, International Journal for Numerical Methods in Fluids 40 (2002), p. 1209-1235 Article |  MR 1939062 |  Zbl 1025.76023
[48] P. Woodward & P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, Journal of Computational Physics 54 (1984), p. 115-173 Article |  MR 748569 |  Zbl 0573.76057
[49] Z. Xu, Y. Liu, H. Du, G. Lin & C.-W. Shu, “Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws”, Journal of Computational Physics 230 (2011), p. 6843-6865 Article |  MR 2818626
[50] S.Y. Yoon & T. Yabe, “The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method”, Computer Physics Communications 119 (1999), p. 149-158 Article |  Zbl 1175.76119