With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article
Christophe Besse; Feng Xing
Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose–Einstein condensates
SMAI-Journal of computational mathematics, 2 (2016), p. 277-300, doi: 10.5802/smai-jcm.17
Article PDF
Class. Math.: 35Q55, 65M55, 65Y05, 65M60
Keywords: nonlinear Schrödinger equation, rotating Bose–Einstein condensate, optimized Schwarz method, preconditioned algorithm, parallel algorithm

Abstract

In this paper, we apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and extend this method to the simulation of Bose–Einstein condensates (Gross– Pitaevskii equation). We propose an extended version of the Schwartz method by introducing a preconditioned algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned algorithm improves the convergence rate and reduces the computation time. In addition, the classical Robin condition and a newly constructed absorbing condition are used as transmission conditions.

Bibliography

[1] X. Antoine, W. Bao & C. Besse, “Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations”, Comput. Phys. Commun. 184 (2013) no. 12, p. 2621-2633 Article |  MR 3377832
[2] X. Antoine, C. Besse & P. Klein, “Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation With an Exterior Potential Part I: Construction and a Priori Estimates”, Math. Model. Methods Appl. Sci. 22 (2012) no. 10 Article |  MR 3128901
[3] X. Antoine, C. Besse & P. Klein, “Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: Discretization and numerical results”, Numer. Math. 125 (2013) no. 2, p. 191-223 Article |  MR 2974164 |  Zbl 1251.35096
[4] X. Antoine & R. Duboscq, “Computer Physics cations GPELab , a Matlab Toolbox to solve Gross–Pitaevskii Equations I : computation of stationary solutions”, Comput. Phys. Commun. 185 (2014) no. 11, p. 2969-2991 Article |  MR 3101827
[5] X. Antoine, E. Lorin & A. D. Bandrauk, “Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrödinger Equation with Ionization and Recombination by Intense Electric Field”, J. Sci. Comput. (2014), p. 1-27
[6] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith & H. Zhang, PETSc Users Manual, Technical report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013
[7] W. Bao & Y. Cai, “Mathematical theory and numerical methods for Bose-Einstein condensation”, Kinet. Relat. Model. 6 (2012) no. 1, p. 1-135 Article |  MR 3005624 |  Zbl 1266.82009
[8] W. Bao, I.-L. Chern & F. Y. Lim, “Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates”, J. Comput. Phys. 219 (2006) no. 2, p. 836-854 Article |  MR 2274959
[9] W. Bao & Q. Du, “Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow”, SIAM J. Sci. Comput. 25 (2004) no. 5, p. 1674-1697 Article |  MR 2087331 |  Zbl 1061.82025
[10] W. Bao, D. Marahrens, Q. Tang & Y. Zhang, “A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose–Einstein Condensates via Rotating Lagrangian Coordinates”, SIAM J. Sci. Comput. 35 (2013) no. 6 Article |  MR 3129763 |  Zbl 1286.35213
[11] W. Bao, P. A. Markowich & H. Wang, “Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates”, Commun. Math. Sci. 3 (2005) no. 1, p. 57-88 Article |  MR 2132826 |  Zbl 1073.82004
[12] C. Besse & F. Xing, “Domain decomposition algorithms for two dimensional linear Schrödinger equation”, https://arxiv.org/abs/1506.05639, 2015
[13] C. Besse & F. Xing, “Schwarz waveform relaxation method for one dimensional Schrödinger equation with general potential”, Numerical Algorithms, accepted (2016) Article
[14] Y. Boubendir, X. Antoine & C. Geuzaine, “A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation”, J. Comput. Phys. 231 (2012) no. 2, p. 262-280 Article |  MR 2872075 |  Zbl 1243.65144
[15] A. Durán & J.-M. Sanz-Serna, “The numerical integration of relative equilibrium solutions. The nonlinear Schrodinger equation”, IMA J. Numer. Anal. 20 (2000) no. 2, p. 235-261 Article |  MR 1752264 |  Zbl 0954.65087
[16] M. J. Gander, “Optimized Schwarz Methods”, SIAM J. Numer. Anal. 44 (2006) no. 2, p. 699-731 Article |  MR 2218966 |  Zbl 1117.65165
[17] M. J. Gander, “Schwarz methods over the course of time”, Electron. Trans. Numer. Anal. 31 (2008), p. 228-255  MR 2569603 |  Zbl 1171.65020
[18] M. J. Gander & L. Halpern, “Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems”, SIAM J. Numer. Anal. 45 (2007) no. 2, p. 666-697 Article |  MR 2300292 |  Zbl 1140.65063
[19] M. J. Gander & L. Halpern, Méthodes de décomposition de domaine, Encyclopédie électronique pour les ingénieurs, 2012
[20] M. J. Gander, F. Magoules & F. Nataf, “Optimized Schwarz methods without overlap for the Helmholtz equation”, SIAM J. Sci. Comput. 24 (2002) no. 1, p. 38-60 Article |  MR 1924414 |  Zbl 1021.65061
[21] L. Halpern & J. Szeftel, “Optimized and quasi-optimal Schwarz waveform relaxation for the one dimensional Schrödinger equation”, Math. Model. Methods Appl. Sci. 20 (2010) no. 12, p. 2167-2199 Article |  MR 2755497 |  Zbl 1213.35192
[22] P.-L. Lions, “On the Schwarz alternating method. III: a variant for nonoverlapping subdomains”, Third Int. Symp. domain Decompos. methods Partial Differ. equations 6 (1990), p. 202-223  Zbl 0704.65090
[23] S. Loisel, “Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points”, SIAM J. Numer. Anal. 51 (2013) no. 6, p. 3062-3083 Article |  MR 3129755 |  Zbl 1287.35003
[24] Message Passing Interface Forum, “MPI : A Message-Passing Interface Standard Version 3.0” 2012, https://spcl.inf.ethz.ch/Publications/index.php?pub=160
[25] F. Nataf & F. Rogier, “Factorization of the convection-diffusion operator and a (possibly) non overlapping Schwarz method”, Contemp. Math. (1994) Article |  Zbl 0796.65105