With cedram.org   version française
Search for an article
Table of contents for this volume | Next article
Jason S. Howell; Michael Neilan; Noel J. Walkington
A Dual–Mixed Finite Element Method for the Brinkman Problem
SMAI-Journal of computational mathematics, 2 (2016), p. 1-17, doi: 10.5802/smai-jcm.7
Article PDF
Class. Math.: 65N30, 65N12
Keywords: Brinkman, Stokes, Darcy, mixed methods

Abstract

A mixed variational formulation of the Brinkman problem is presented which is uniformly well–posed for degenerate (vanishing) coefficients under the hypothesis that a generalized Poincaré inequality holds. The construction of finite element schemes which inherit this property is then considered.

Bibliography

[1] G. Allaire, “Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes”, Arch. Rational Mech. Anal. 113 (1990) no. 3, p. 209-259 Article |  MR 1079189 |  Zbl 0724.76020
[2] G. Allaire, “Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes”, Arch. Rational Mech. Anal. 113 (1990) no. 3, p. 261-298 Article |  MR 1079190 |  Zbl 0724.76021
[3] F. Anisi, N. Salehi-Nik, G. Amoabediny, B. Pouran, N. Haghighipour & B. Zandieh-Doulabi, “Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis”, Journal of Artificial Organs 17 (2014) no. 4, p. 329-336 Article
[4] T. Arbogast & H.L. Lehr, “Homogenization of a Darcy-Stokes system modeling vuggy porous media”, Comput. Geosci. 10 (2006) no. 3, p. 291-302 Article |  MR 2261837 |  Zbl 1197.76122
[5] D.N. Arnold, J. Jr. Douglas & C.P. Gupta, “A family of higher order mixed finite element methods for plane elasticity”, Numer. Math. 45 (1984) no. 1, p. 1-22 Article |  MR 761879 |  Zbl 0558.73066
[6] D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk & M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics 1939, Springer-Verlag, Berlin, 2008, Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by Boffi and Lucia Gastaldi Article |  MR 2459075
[7] F. Brezzi, J. Jr. Douglas, M. Fortin & L.D. Marini, “Efficient rectangular mixed finite elements in two and three space variables”, RAIRO Modél. Math. Anal. Numér. 21 (1987) no. 4, p. 581-604 Numdam |  MR 921828 |  Zbl 0689.65065
[8] F. Brezzi & M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, Springer-Verlag, New York, 1991  MR 1115205 |  Zbl 0788.73002
[9] N. Chen, M. Gunzburger & W. Wang, “Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system”, Journal of Mathematical Analysis and Applications 368 (2010) no. 2, p. 658 -676 Article |  MR 2643831
[10] D.B. Das, “Hydrodynamic modelling for groundwater flow through permeable reactive barriers”, Hydrological Processes 16 (2002) no. 17, p. 3393-3418 Article
[11] G. N. Gatica, L.F. Gatica & A. Márquez, “Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow”, Numer. Math. 126 (2014) no. 4, p. 635-677 Article |  MR 3175180
[12] G. N. Gatica, R. Oyarzúa & F.-J. Sayas, “Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem”, Numer. Methods Partial Differential Equations 27 (2011) no. 3, p. 721-748 Article |  MR 2809968 |  Zbl 1301.76046
[13] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984 Article |  MR 737005 |  Zbl 0536.65054
[14] M. Griebel & M. Klitz, “Homogenization and numerical simulation of flow in geometries with textile microstructures”, Multiscale Model. Simul. 8 (2010) no. 4, p. 1439-1460 Article |  MR 2718267
[15] J. Guzmán & M. Neilan, “A family of nonconforming elements for the Brinkman problem”, IMA J. Numer. Anal. 32 (2012) no. 4, p. 1484-1508 Article |  MR 2991835
[16] A. Hannukainen, M. Juntunen & R. Stenberg, “Computations with finite element methods for the Brinkman problem”, Comput. Geosci. 15 (2011) no. 1, p. 155-166 Article
[17] J.S. Howell & N.J. Walkington, “Inf-sup conditions for twofold saddle point problems”, Numer. Math. 118 (2011) no. 4, p. 663-693 Article |  MR 2822495 |  Zbl 1230.65128
[18] J.S. Howell & N.J. Walkington, “Dual-mixed finite element methods for the Navier-Stokes equations”, ESAIM: M2AN 47 (2013) no. 3, p. 789-805 Numdam |  MR 3056409 |  Zbl 1266.76029
[19] M. Juntunen & R. Stenberg, “Analysis of finite element methods for the Brinkman problem”, Calcolo 47 (2010) no. 3, p. 129-147 Article |  MR 2672618
[20] G. Kanschat & B. Rivière, “A strongly conservative finite element method for the coupling of Stokes and Darcy flow”, J. Comput. Phys. 229 (2010) no. 17, p. 5933-5943 Article |  MR 2657851
[21] T. Kaya & J. Goldak, “Three-dimensional numerical analysis of heat and mass transfer in heat pipes”, Heat and Mass Transfer 43 (2007) no. 8, p. 775-785 Article
[22] J. Könnö & R. Stenberg, “$H ({\rm div})$-conforming finite elements for the Brinkman problem”, Math. Models Methods Appl. Sci. 21 (2011) no. 11, p. 2227-2248 Article |  MR 2860674
[23] J. Könnö & R. Stenberg, “Numerical computations with $H({\rm div})$-finite elements for the Brinkman problem”, Comput. Geosci. 16 (2012) no. 1, p. 139-158 Article |  MR 2868741
[24] T. Lévy, “Erratum: “Loi de Darcy ou loi de Brinkman?””, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981) no. 17  MR 623960 |  Zbl 0485.76074
[25] K. Mardal, X. Tai & R. Winther, “A Robust Finite Element Method for Darcy-Stokes Flow”, SIAM Journal on Numerical Analysis 40 (2002) no. 5, p. 1605-1631 Article |  MR 1950614 |  Zbl 1037.65120
[26] A. Márquez, S. Meddahi & F.-J. Sayas, “Strong coupling of finite element methods for the Stokes-Darcy problem”, IMA J. Numer. Anal. 35 (2015) no. 2, p. 969-988 Article |  MR 3335232
[27] P. Monk, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003 Article |  MR 2059447 |  Zbl 1024.78009
[28] V. Nassehi, “Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration”, Chemical Engineering Science 53 (1998) no. 6, p. 1253-1265 Article
[29] J.-C. Nédélec, “Mixed finite elements in ${\bf R}^{3}$”, Numer. Math. 35 (1980) no. 3, p. 315-341 Article |  Zbl 0419.65069
[30] J. T. Podichetty, P.R. Bhaskar, A. Khalf & S.V. Madihally, “Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration”, Annals of Biomedical Engineering 42 (2014) no. 6, p. 1319-1330 Article
[31] R. Qi & X. Yang, “A nonconforming rectangular finite element pair for the Darcy-Stokes-Brinkman model”, Numerical Methods for Partial Differential Equations 29 (2013) no. 2, p. 510-530 Article |  MR 3022897
[32] K.R. Rajagopal, “On a hierarchy of approximate models for flows of incompressible fluids through porous solids”, Math. Models Methods Appl. Sci. 17 (2007) no. 2, p. 215-252 Article |  MR 2292356 |  Zbl 1123.76066
[33] P.-A. Raviart & J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, 1977, p. 292–315. Lecture Notes in Math., Vol. 606  MR 483555 |  Zbl 0362.65089
[34] P. Seokwon, V.D. Dhananjay & V.M. Sundararajan, “Computational simulation modelling of bioreactor configurations for regenerating human bladder”, Computer Methods in Biomechanics and Biomedical Engineering 16 (2013) no. 8, p. 840-851, PMID: 22224865 Article
[35] X.-C. Tai & R. Winther, “A discrete de Rham complex with enhanced smoothness”, Calcolo 43 (2006) no. 4, p. 287-306 Article |  MR 2283095 |  Zbl 1168.76311
[36] P. Vassilevski & U. Villa, “A Mixed Formulation for the Brinkman Problem”, SIAM Journal on Numerical Analysis 52 (2014) no. 1, p. 258-281 Article |  MR 3162407
[37] X. Xie, J. Xu & G. Xue, “Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models”, J. Comput. Math. 26 (2008) no. 3, p. 437-455  MR 2421892 |  Zbl 1174.76013
[38] X. Xu & S. Zhang, “A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations”, SIAM J. Sci. Comput. 32 (2010) no. 2, p. 855-874 Article |  MR 2609343