With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article | Next article
Charles M. Elliott; Hans Fritz
On algorithms with good mesh properties for problems with moving boundaries based on the Harmonic Map Heat Flow and the DeTurck trick
SMAI-Journal of computational mathematics, 2 (2016), p. 141-176, doi: 10.5802/smai-jcm.12
Article PDF
Class. Math.: 65M50, 65M60, 35R01, 35R35
Keywords: Moving boundary, surface finite elements, mesh improvement, harmonic map heat flow, DeTurck trick

Abstract

In this paper, we present a general approach to obtain numerical schemes with good mesh properties for problems with moving boundaries, that is for evolving submanifolds with boundaries. This includes moving domains and surfaces with boundaries. Our approach is based on a variant of the so-called the DeTurck trick. By reparametrizing the evolution of the submanifold via solutions to the harmonic map heat flow of manifolds with boundary, we obtain a new velocity field for the motion of the submanifold. Moving the vertices of the computational mesh according to this velocity field automatically leads to computational meshes of high quality both for the submanifold and its boundary. Using the ALE-method in [16], this idea can be easily built into algorithms for the computation of physical problems with moving boundaries.

Bibliography

[1] C. Baker, The mean curvature flow of submanifolds of high codimension, Ph. D. Thesis, Australian National University, http://www.arxiv.org/abs/1104.4409v1, 2010
[2] A. Bonito, R. Nochetto & M. S. Pauletti, “Geometrically consistent mesh modification”, SIAM J. Numer. Anal. 48 (2010), p. 1877-1899 Article |  MR 2733102 |  Zbl 1220.65169
[3] C. J. Budd, W. Huang & R. D. Russell, “Adaptivity with moving grids”, Acta Numerica 18 (2009), p. 111-241 Article |  MR 2506041 |  Zbl 1181.65122
[4] B. Chow, P. Lu & L. Ni, Hamilton’s Ricci Flow, Graduate Studies in Mathematics, AMS Science Press, 2006  MR 2274812 |  Zbl 1118.53001
[5] U. Clarenz & G. Dziuk, Numerical methods for conformally parametrized surfaces, in CPDw04 - Interphase 2003: Numerical Methods for Free Boundary Problems, Newton Institute Cambridge, http://www.newton.ac.uk/webseminars/pg+ws/2003/cpd/cpdw04/0415/dziuk, 2003
[6] U. Clarenz, N. Litke & M. Rumpf, “Axioms and variational problems in surface parameterization”, Computer Aided Geometric Design 21 (2004), p. 727-749 Article |  MR 2091140 |  Zbl 1069.65547
[7] K. Deckelnick, G. Dziuk & C. M. Elliott, “Computation of geometric partial differential equations and mean curvature flow”, Acta Numerica 14 (2005), p. 139-232 Article |  MR 2168343 |  Zbl 1113.65097
[8] D. M. DeTurck, “Deforming metrics in the direction of their Ricci tensor”, Journal of Differential Geometry 18 (1983) no. 11, p. 157-162  MR 697987 |  Zbl 0517.53044
[9] A. S. Dvinsky, “Adaptive grid generation from harmonic maps on Riemannian manifolds”, J. of Comp. Phys. 95 (1991), p. 450-476 Article |  MR 1117849 |  Zbl 0733.65074
[10] G. Dziuk, “An algorithm for evolutionary surfaces”, Numerische Mathematik 58 (1991) no. 1, p. 603-611 Article |  MR 1083523 |  Zbl 0714.65092
[11] G. Dziuk & C. M. Elliott, “Finite element methods for surface PDEs”, Acta Numerica 22 (2013), p. 289-396 Article |  MR 3038698 |  Zbl 1296.65156
[12] J. Eells & J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math. 86 (1964), p. 109-160 Article |  MR 164306 |  Zbl 0122.40102
[13] J. Eells & J. C. Wood, “Restrictions on harmonic maps of surfaces”, Topology 15 (1976), p. 263-266 Article |  MR 420708 |  Zbl 0328.58008
[14] C. M. Elliott & H. Fritz, “On Approximations of the Curve Shortening Flow and of the Mean Curvature Flow based on the DeTurck trick”, IMA Journal of Numerical Analysis (2016), doi: 10.1093/imanum/drw020
[15] C. M. Elliott & J. R. Ockendon, Weak and variational methods for moving boundary problems, Pitman, London, 1982  MR 650455 |  Zbl 0476.35080
[16] C. M. Elliott & V. M. Styles, “An ALE ESFEM for solving PDEs on evolving surfaces”, Milan Journal of Mathematics 80 (2012), p. 469-501 Article |  MR 3000495 |  Zbl 1259.65147
[17] C. M. Elliott & C. Venkataraman, “Error analysis for an ALE evolving surface finite element method”, Num. Methods for PDEs 31 (2015), p. 459-499 Article |  MR 3312128
[18] H. Fritz, “Isoparametric finite element approximation of Ricci curvature”, IMA Journal of Numerical Analysis 33 (2013) no. 4, p. 1265-1290 Article |  MR 3119716 |  Zbl 1278.65175
[19] B. Gustaffson & A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells, Birkhauser Verlag, 2006, ISBN 3-7643-7703-8  Zbl 1122.76002
[20] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro & M. Halle, “Conformal surface parameterization for texture mapping”, IEEE Transactions on Visualization and Computer Graphics 6 (2000) no. 2, p. 181-189 Article
[21] R. S. Hamilton, Harmonic maps of manifolds with boundary, Springer Lecture Notes 471, 1975  MR 482822 |  Zbl 0308.35003
[22] R. S. Hamilton, “Heat equations in geometry”, Lecture notes, 1989
[23] R. S. Hamilton, “The formation of singularities in the Ricci flow”, Surveys in Differential Geometry 227 (1995), p. 7-136  MR 1375255 |  Zbl 0867.53030
[24] C.-J. Heine, “Curvature reconstruction with linear finite elements”, Private communications, 2009
[25] W. Huang, “Practical aspects of formulation and solution of moving mesh partial differential equations”, J. of Comp. Phys. 171 (2001), p. 753-775 Article |  MR 1848733 |  Zbl 0990.65107
[26] W. Huang & R. D. Russell, “Moving mesh strategy based upon a gradient flow equation for two dimensional problems”, SIAM J. Sci. Comput. 20 (1998) no. 3, p. 998-1015 Article |  MR 1665654 |  Zbl 0956.76076
[27] W. Huang & R. D. Russell, “Adaptive Moving Mesh Methods”, Applied Mathematical Sciences Volume 174 (2011)  MR 2722625 |  Zbl 1227.65090
[28] M. Jin, Y. Wang, S.-T. Yau & X. Gu, Optimal global conformal surface parameterization, in Proceedings of the Conference on Visualization ’04, 2004, p. 267-274
[29] J. Jost, “Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichlet-Problem lösen, mittels der Methode des Wärmeflusses”, Manuscripta mathematica 34 (1981), p. 17-25 Article |  MR 614386 |  Zbl 0459.58013
[30] E. Kelley & E. J. Hinch, “Numerical simulations of sink flow in the Hele-Shaw cell with small surface tension”, Euro. J. Applied Math. 8 (1997), p. 533-550 Article |  MR 1608607 |  Zbl 0901.76015
[31] G. Macdonald, J. A. Mackenzie, M. Nolan & R. H. Insall, A Computational Method for the Coupled Solution of Reaction-Diffusion Equations on Evolving Domains and Surfaces: Application to a Model of Cell Migration and Chemotaxis, Technical report 6, Strathclyde University Department of Mathematics and Statistics, 2015
[32] K. Mikula, M. Remešíková, P. Sarkoci & D. Ševčovič, “Manifold evolution with tangential redistribution of points”, SIAM J. Sci. Comput. 36 (2014) no. 4, p. A1384-A1414 Article |  MR 3226752
[33] A. Schmidt & K. G. Siebert, Design of Adaptive Finite Element Software, Lecture Notes in Computational Science and Engineering 42, Springer, 2005  MR 2127659 |  Zbl 1068.65138
[34] J. Steinhilber, Numerical analysis for harmonic maps between hypersurfaces and grid improvement for computational parametric geometric flows, Ph. D. Thesis, University of Freiburg, http://www.freidok.uni-freiburg.de/volltexte/9537/, 2014  Zbl 1296.53010
[35] A. M. Winslow, “Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh”, J. of Comp. Phys. 1 (1966) no. 2, p. 149-172 Article |  MR 241008 |  Zbl 0254.65069