Avec cedram.org  english version
Rechercher un article
Table des matières de ce volume | Article précédent | Article suivant
Philipp Grohs; Ralf Hiptmair; Simon Pintarelli
Tensor-Product Discretization for the Spatially Inhomogeneous and Transient Boltzmann Equation in Two Dimensions
SMAI-Journal of computational mathematics, 3 (2017), p. 219-248
Article PDF
Class. Math.: 76J20, 76H05, 76P05, 82C40, 82D05, 65Y05, 65M60


We consider the spatially inhomogeneous and nonlinear Boltzmann equation for the variable hard spheres model. The distribution function is discretized by a tensor-product ansatz by combining Maxwellian modulated Laguerre polynomials in velocity with continuous, linear finite elements in the spatial domain. The advection problem in phase space is discretized through a Galerkin least squares technique and yields an implicit formulation in time. The discrete collision operator can be evaluated with an asymptotic effort of $\mathcal{O}(K^5)$, where $K$ is the number of velocity degrees of freedom in a single direction. Numerical results in 2D are presented for rarefied gases with different Mach and Knudsen numbers.


[1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, 1972  MR 177136
[2] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier & B. Turcksin, “The deal.II library, Version 8.3”, Archive of Numerical Software 4 (2016) no. 100, p. 1-11 Article
[3] G. A Bird, Molecular Gas Dynamics And The Direct Simulation Of Gas Flows, Clarendon Press; Oxford University Press, 1994
[4] A. Bobylev & S. Rjasanow, “Difference scheme for the Boltzmann equation based on the Fast Fourier Transform”, European Journal of Mechanics, B/Fluids 16 (1997) no. 2, p. 293-306
[5] A. V. Bobylev & S. Rjasanow, “Fast deterministic method of solving the Boltzmann equation for hard spheres”, Eur. J. Mech. B. Fluids 18 (1999) no. 5, p. 869-887 Article
[6] C. Cercignani, Chapter 1 - The Boltzmann Equation and Fluid Dynamics, in S. Friedlander D. Serre, éd., Handbook of Mathematical Fluid Dynamics, North-Holland, 2002, p. 1–69
[7] G. Dimarco & L. Pareschi, “Numerical methods for kinetic equations”, Acta Numerica 23 (2014), p. 369-520 Article
[8] A. F. Emery, “An evaluation of several differencing methods for inviscid fluid flow problems”, J. Comput. Phys. 2 (1968) no. 3, p. 306-331 Article
[9] A. Ya Ender & I. A. Ender, “Polynomial expansions for the isotropic Boltzmann equation and invariance of the collision integral with respect to the choice of basis functions”, Physics of Fluids (1994-present) 11 (1999) no. 9, p. 2720-2730 Article
[10] F. Filbet, “On deterministic approximation of the Boltzmann equation in a bounded domain”, Multiscale Modeling & Simulation 10 (2012) no. 3, p. 792-817 Article
[11] F. Filbet, C. Mouhot & L. Pareschi, “Solving the Boltzmann equation in N log N”, SIAM J. Sci. Comput. 28 (2006) no. 3, p. 1029-1053 Article
[12] F. Filbet, L. Pareschi & T. Rey, “On steady-state preserving spectral methods for homogeneous Boltzmann equations”, C.R. Math. 353 (2015) no. 4, p. 309-314 Article
[13] E. Fonn, P. Grohs & R. Hiptmair, Polar spectral scheme for the spatially homogeneous Boltzmann equation, Technical report 2014-13, Seminar for Applied Mathematics, ETH Zürich, 2014
[14] G. Kitzler & J. Schöberl, Efficient spectral methods for the spatially homogeneous Boltzmann equation, Technical report 13/2013, Institute for Analysis and Scientific Computing, TU Wien, 2013
[15] I. M. Gamba & S. H. Tharkabhushanam, “Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states”, J. Comput. Phys. 228 (2009) no. 6, p. 2012-2036 Article
[16] G. H. Golub & J. H. Welsch, “Calculation of Gauss quadrature rules”, Math. Comput. 23 (1969) no. 106, p. 221-s10
[17] H. Grad, Principles of the kinetic theory of gases, in S. Flügge, éd., Thermodynamics of Gases, Encyclopedia of Physics, Springer Berlin Heidelberg, 1958, p. 205–294 Article
[18] P. Grohs, R. Hiptmair & S. Pintarelli, Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in 2D, Technical report 2015-38, Seminar for Applied Mathematics, ETH Zürich, 2015
[19] M.A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams & K. S. Stanley, “An Overview of the Trilinos Project”, ACM Trans. Math. Softw. 31 (2005) no. 3, p. 397-423 Article
[20] T. Jahnke & C. Lubich, “Error Bounds for Exponential Operator Splittings”, BIT Numerical Mathematics 40 (2000) no. 4, p. 735-744 Article
[21] R. Käppeli, S. C. Whitehouse, S. Scheidegger, U.-L. Pen & M. Liebendörfer, “FISH: A Three-dimensional Parallel Magnetohydrodynamics Code for Astrophysical Applications”, The Astrophysical Journal Supplement Series 195 (2011) no. 2 Article
[22] G. Kitzler & J. Schöberl, “A high order space–momentum discontinuous Galerkin method for the Boltzmann equation”, Computers & Mathematics with Applications 70 (2015) no. 7, p. 1539-1554 Article
[23] K. Nanbu, “Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases”, J. Phys. Soc. Jpn. 49 (1980) no. 5, p. 2042-2049 Article
[24] P. B. Bochev & M. D. Gunzburger, Least-squares finite element methods, Applied mathematical sciences 166, Springer, 2009 Article
[25] L. Pareschi & B. Perthame, “A Fourier spectral method for homogeneous Boltzmann equations”, Transp. Theory Stat. Phys. 25 (1996) no. 3-5, p. 369-382 Article
[26] L. Pareschi & G. Russo, “Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator”, SIAM J. Numer. Anal. 37 (2000) no. 4, p. 1217-1245 Article
[27] B. Shizgal, “A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems”, J. Comput. Phys. 41 (1981) no. 2, p. 309-328 Article
[28] C. Villani, A review of mathematical topics in collisional kinetic theory, in S. Friedlander, D. Serre, éd., Handbook of Mathematical Fluid Dynamics, Vol. 1, Elsevier, 2002, p. 71–305
[29] U. Wiesmann, “The Spherical Laguerre Method for the Spatially Homogeneous Boltzmann Equation”, masterthesis, ETH Zurich, 2015
[30] L. Wu, C. White, T. J. Scanlon, J. M. Reese & Y. Zhang, “Deterministic numerical solutions of the Boltzmann equation using the fast spectral method”, J. Comput. Phys. 250 (2013), p. 27-52 Article