Avec cedram.org  english version
Rechercher un article
Table des matières de ce volume | Article précédent | Article suivant
Ernst Hairer; Christian Lubich
Symmetric multistep methods for charged-particle dynamics
SMAI-Journal of computational mathematics, 3 (2017), p. 205-218, doi: 10.5802/smai-jcm.25
Article PDF
Class. Math.: 65L06, 65P10, 78A35, 78M25
Mots clés: linear multistep method, charged particle, magnetic field, energy conservation, backward error analysis, modified differential equation, modulated Fourier expansion


A class of explicit symmetric multistep methods is proposed for integrating the equations of motion of charged particles in an electro-magnetic field. The magnetic forces are built into these methods in a special way that respects the Lagrangian structure of the problem. It is shown that such methods approximately preserve energy and momentum over very long times, proportional to a high power of the inverse stepsize. We explain this behaviour by studying the modified differential equation of the methods and by analysing the remarkably stable propagation of parasitic solution components.


[1] J. P. Boris, “Relativistic plasma simulation-optimization of a hybrid code”, Proceeding of Fourth Conference on Numerical Simulations of Plasmas (1970), p. 3-67
[2] P. Console, E. Hairer & C. Lubich, “Symmetric multistep methods for constrained Hamiltonian systems”, Numerische Mathematik 124 (2013), p. 517-539 Article
[3] G. Dahlquist, “Stability and error bounds in the numerical integration of ordinary differential equations”, Trans. of the Royal Inst. of Techn., Stockholm, Sweden 130 (1959)
[4] C. L. Ellison, J. W. Burby & H. Qin, “Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational”, J. Comput. Phys. 301 (2015), p. 489-493 Article
[5] E. Hairer & C. Lubich, “Symmetric multistep methods over long times”, Numer. Math. 97 (2004), p. 699-723 Article |  MR 2127929
[6] E. Hairer & C. Lubich, “Energy behaviour of the Boris method for charged-particle dynamics”, Submitted for publication (2017)
[7] E. Hairer, C. Lubich & G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, 2006
[8] E. Hairer, S. P. Nørsett & G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics 8, Springer, Berlin, 1993
[9] Y. He, Z. Zhou, Y. Sun, J. Liu & H. Qin, “Explicit $K$-symplectic algorithms for charged particle dynamics”, Phys. Lett. A 381 (2017) no. 6, p. 568-573 Article
[10] M. Tao, “Explicit high-order symplectic integrators for charged particles in general electromagnetic fields”, J. Comput. Phys. 327 (2016), p. 245-251 Article
[11] S. D. Webb, “Symplectic integration of magnetic systems”, J. Comput. Phys. 270 (2014), p. 570-576 Article
[12] R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He & J. Xiao, “Explicit symplectic algorithms based on generating functions for charged particle dynamics”, Physical Review E 94 (2016) no. 1 Article