Avec cedram.org  english version
Rechercher un article
Table des matières de ce volume | Article précédent | Article suivant
Ernst Hairer; Christian Lubich
Symmetric multistep methods for charged-particle dynamics
SMAI-Journal of computational mathematics, 3 (2017), p. 205-218, doi: 10.5802/smai-jcm.25
Article PDF
Class. Math.: 65L06, 65P10, 78A35, 78M25
Mots clés: linear multistep method, charged particle, magnetic field, energy conservation, backward error analysis, modified differential equation, modulated Fourier expansion

Abstract

A class of explicit symmetric multistep methods is proposed for integrating the equations of motion of charged particles in an electro-magnetic field. The magnetic forces are built into these methods in a special way that respects the Lagrangian structure of the problem. It is shown that such methods approximately preserve energy and momentum over very long times, proportional to a high power of the inverse stepsize. We explain this behaviour by studying the modified differential equation of the methods and by analysing the remarkably stable propagation of parasitic solution components.

Bibliographie

[1] J. P. Boris, “Relativistic plasma simulation-optimization of a hybrid code”, Proceeding of Fourth Conference on Numerical Simulations of Plasmas (1970), p. 3-67
[2] P. Console, E. Hairer & C. Lubich, “Symmetric multistep methods for constrained Hamiltonian systems”, Numerische Mathematik 124 (2013), p. 517-539
[3] G. Dahlquist, “Stability and error bounds in the numerical integration of ordinary differential equations”, Trans. of the Royal Inst. of Techn., Stockholm, Sweden 130 (1959)
[4] C. L. Ellison, J. W. Burby & H. Qin, “Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational”, J. Comput. Phys. 301 (2015), p. 489-493
[5] E. Hairer & C. Lubich, “Symmetric multistep methods over long times”, Numer. Math. 97 (2004), p. 699-723  MR 2127929
[6] E. Hairer & C. Lubich, “Energy behaviour of the Boris method for charged-particle dynamics”, Submitted for publication (2017)
[7] E. Hairer, C. Lubich & G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, 2006
[8] E. Hairer, S. P. Nørsett & G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics 8, Springer, Berlin, 1993
[9] Y. He, Z. Zhou, Y. Sun, J. Liu & H. Qin, “Explicit $K$-symplectic algorithms for charged particle dynamics”, Phys. Lett. A 381 (2017) no. 6, p. 568-573
[10] M. Tao, “Explicit high-order symplectic integrators for charged particles in general electromagnetic fields”, J. Comput. Phys. 327 (2016), p. 245-251
[11] S. D. Webb, “Symplectic integration of magnetic systems”, J. Comput. Phys. 270 (2014), p. 570-576
[12] R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He & J. Xiao, “Explicit symplectic algorithms based on generating functions for charged particle dynamics”, Physical Review E 94 (2016) no. 1