With cedram.org   version française
Search for an article
Table of contents for this volume | Previous article | Next article
Mireille Bossy; José Espina; Jacques Moricel; Cristián Paris; Antoine Rousseau
Modeling the wind circulation around mills with a Lagrangian stochastic approach
SMAI-Journal of computational mathematics, 2 (2016), p. 177-214, doi: 10.5802/smai-jcm.13
Article PDF
Keywords: Lagrangian stochastic model, PDF method, atmospheric boundary layer, actuator disc model

Abstract

This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. First, for validation purpose we compare some numerical experiments against wind tunnel measurements. Second we perform some numerical experiments at the atmospheric scale and present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method.

Bibliography

[1] I.H. Abbott & A.E. von Doenhoff, Theory of Wing Sections, Dover Publications, 1959
[2] M. Bergmann & A. Iollo, Numerical simulation of horizontal-axis wind turbine (HAWT), In International Conference on Computational Fluid Dynamics (ICCFD7), 2012
[3] F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau & T. Salameh, “Stochastic Downscaling Methods : Application to Wind Refinement”, Stoch. Environ. Res. Risk. Assess. 23 (2009) no. 6 Article |  MR 2516211
[4] F. Bernardin, M. Bossy, C. Chauvin, J-F. Jabir & A. Rousseau, “Stochastic Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics”, ESAIM: M2AN 44 (2010) no. 5, p. 885-920 Article |  MR 2731397
[5] M. Bossy, J. Fontbona, P-E. Jabin & J-F. Jabir, “Local Existence of Analytical Solutions to an Incompressible Lagrangian Stochastic Model in a Periodic Domain”, Communications in Partial Differential Equations 38 (2013) no. 7, p. 1141-1182 Article |  MR 3169741 |  Zbl 1274.35384
[6] M. Bossy & J.-F. Jabir, “Lagrangian stochastic models with specular boundary condition”, Journal of Functional Analysis 268 (2015) no. 6, p. 1309 -1381 Article |  MR 3306352
[7] P. Carlotti, “Two-Point Properties Of Atmospheric Turbulence Very Close To The Ground: Comparison Of A High Resolution Les With Theoretical Models”, Boundary-Layer Meteorology 104 (2002) no. 3, p. 381-410 Article
[8] L.P. Chamorro & F. Porté-Agel, “Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study”, Boundary-Layer Meteorology 136 (2010) no. 3, p. 515-533 Article
[9] P. Drobinski, Wind and Solar Renewable Energy Potential Resources Estimation, Encyclopedia of Life Support Systems, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, 2014
[10] P. Drobinski, P. Carlotti, J.-L. Redelsperger, V. Masson, R.M. Banta & R.K. Newsom, “Numerical and experimental investigation of the neutral atmospheric surface layer”, J. Atmos. Sci. 64 (2007), p. 137-156 Article
[11] P.-A. Durbin & C.-G. Speziale, “Realizability of second-moment closure via stochastic analysis”, J. Fluid Mech. 280 (1994), p. 395-407 Article |  Zbl 0822.76044
[12] A. El Kasmi & C. Masson, “An extended model for turbulent flow through horizontal-axis wind turbines”, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) no. 1, p. 103 -122 Article
[13] A. Hallanger & I.Ø. Sand, “CFD Wake Modelling with a BEM Wind Turbine Sub-Model”, Modeling, Identification and Control 34 (2013) no. 1, p. 19-33 Article
[14] M. Hansen, Aerodynamics of wind turbines, Earthscan, London, 2008
[15] D.C. Haworth, “Progress in probability density function methods for turbulent reacting flows”, Progress in Energy and Combustion Science 36 (2010) no. 2, p. 168 -259 Article
[16] A. Kebaier, “Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing”, The Annals of Applied Probability 15 (2005) no. 4, p. 2681-2705 Article |  MR 2187308 |  Zbl 1099.65011
[17] P.M. Lafore et al, “The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations”, Annales Geophysicae 16 (1998), p. 90-109 Article
[18] J.F. Manwell, J.G. McGowan & A.L. Rogers, Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, Ltd, 2002 Article
[19] I. Masters, R. Malki, A.J. Williams & T.N. Croft, A Modified k-epsilon Turbulence Model for Tidal Stream Turbine Simulations Using a Coupled BEM-CFD Model, ICOE, 2012
[20] R. Mikkelsen, Actuator Disc Methods Applied to Wind Turbines, Doctoral dissertation, Technical University of Denmark, 2003
[21] J.-P. Minier & E. Peirano, “The pdf approach to turbulent polydispersed two-phase flows”, Physics Reports 352 (2001) no. 1-3, p. 1-214 Article |  MR 1871804 |  Zbl 0971.76039
[22] J.-P. Minier, E. Peirano & S. Chibbaro, “Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling”, Monte Carlo Methods and Applications 9 (2003) no. 2, p. 129-135 Article |  MR 2006482 |  Zbl 1112.65305
[23] J.-P. Minier & J. Pozorski, “Wall-boundary conditions in probability density function methods and application to a turbulent channel flow”, Physics of Fluids 11 (1999) no. 9, p. 2632-2644 Article |  Zbl 1149.76482
[24] S.B. Pope, “Lagrangian pdf methods for turbulent flows”, Annu. Rev. Fluid Mech. 26 (1994), p. 23-63 Article |  MR 1262133 |  Zbl 0802.76033
[25] S.B. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000  MR 1881598 |  Zbl 0966.76002
[26] F. Porté-Agel, Hao Lub & Y.-T. Wu, A large-eddy simulation framework for wind energy applications, in In the Fifth International Symposium on Computational Wind Engineering (CWE2010), 2010
[27] P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983), Lecture Notes in Math. 1127, Springer, 1985, p. 243–324  MR 802214 |  Zbl 0598.76003
[28] P.E. Réthoré, N.N. Sørensen, A. Bechmann & F. Zahle, Study of the atmospheric wake turbulence of a CFD actuator disc model, in In Proceedings of European Wind Energy Conference, 16-19 March, 2009
[29] H. Schmidt & U. Schumann, “Coherent structure of the convective boundary layer derived from large-eddy simulations”, J. Fluid Mech. (1989) Article |  Zbl 0659.76065
[30] J.N. Sørensen & A. Myken, “Unsteady actuator disc model for horizontal axis wind turbines”, Journal of Wind Engineering and Industrial Aerodynamics 39 (1992) no. 1–3, p. 139 -149 Article
[31] S. Sunada, A. Sakaguchi & K. Kawachi, “Airfoil Section Characteristics at a Low Reynolds Number”, ASME. J. Fluids Eng. 119 (1997) no. 1, p. 129-135 Article
[32] Y.-T. Wu & F. Porté-Agel, “Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations”, Boundary-Layer Meteorology 138 (2011) no. 3, p. 345-366 Article
[33] Y.-T. Wu & F. Porté-Agel, “Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects”, Boundary-Layer Meteorology 146 (2013) no. 2, p. 181-205 Article