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Abstract. We propose in the present work an extension of the Schwarz waveform relaxation method to
the case of viscous shallow water system with advection term. We first show the difficulties that arise when
approximating the Dirichlet to Neumann operators if we consider an asymptotic analysis based on large
Reynolds number regime and a small domain aspect ratio. Therefore we focus on the design of a Schwarz
algorithm with Robin like boundary conditions. We prove the well-posedness and the convergence of the
algorithm.
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1. Introduction

As for many other disciplines, numerical modeling studies in the field of hydrodynamics continuously
address more and more complex situations. Rather than working with one single numerical model,
numerous present studies require the use of a numerical modeling system, i.e. several numerical models,
possibly solving different systems of equations (e.g. shallow water, Euler, Navier-Stokes, hydrostatic
or non hydrostatic, mono-phasic or multi-phasic) and/or working in different dimensions (1D, 2D,
3D). These models must work together, i.e. must regularly exchange relevant information. Coupling
algorithms are thus needed, that ensure a correct exchange of information in order for the whole
system to actually solve the target problem. However the models are complex and are generally de-
veloped independently from each other. Therefore a desirable feature for coupling algorithms is to
be non intrusive. In this regard, the Schwarz algorithms, initially designed in the context of domain
decomposition [4, 11, 17, 22] are good candidates, since they do not require any change in the mod-
els but only exchange information through boundary conditions. So called Schwarz global-in-time or
waveform relaxation algorithms [5, 6, 7] even allow for the different models to use different time steps,
thus preventing too many communications between the models by gathering the exchange of infor-
mation at the end of time windows corresponding typically to several tens or hundreds of time steps.
Their main drawback however is their iterative nature, that can potentially lead to huge computation
costs. These methods must thus be optimized in order to minimize the number of iterations that
are required to make the system converge. This convergence speed is directly linked to the boundary
conditions that are used at the interfaces between the models, which means that one must actually
optimize these conditions. It can be shown that so-called perfectly transparent, or equivalently perfectly
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absorbing, boundary conditions [3] lead to an exact convergence in only two iterations [10]. However
those boundary conditions are generally non local neither in time nor in space and cannot be applied
directly, but must be approximated by local tractable operators [4]. Moreover things are even more
complex in the context of coupled models with heterogeneous dimensions (e.g. 2D-3D) since extension
and reduction operators must be added. An example of such a study is given in [21] for a simple toy
model.

Our long term applicative objective is to design efficient Schwarz algorithms for coupling 1D-2D
shallow water (SW) models with 3D Navier-Stokes (NS) models. As an example in river hydraulics, we
could consider the coupling between 1D SW in straight parts of the river, with 2D SW in more curly
regions and/or with 3D NS equations in other specific regions where accurate non-hydrostatic models
should be used (e.g. near a hydroelectric power plant). Since efficient interface conditions are required,
a necessary preliminary step is to study the derivation of exact and approximate absorbing bound-
ary conditions for those systems of equations. A number of previous works deal with Schwarz-type
algorithms for Stokes, Navier-Stokes and Oseen (i.e. linearized Navier-Stokes) systems. They study
either Dirichlet-Dirichlet [18], Dirichlet-Neumann [23], Neumann-Neumann [16], Robin-Robin [15, 14]
or optimized [2] algorithms. But some work still remains to be done to provide efficient conditions
for 3D fully non linear Navier-Stokes equations. Regarding shallow water equations, the question of
perfectly absorbing conditions has been studied in [9] in the general case of incompletely parabolic
equations. However, the approximate conditions proposed in this work rely on a (strong) approxima-
tion neglecting the y-direction. More recently, the optimized Schwarz waveform relaxation method was
applied in [13] to the linearized shallow water system but without advection term, which is limiting for
realistic applications where one generally needs to linearize around a nonzero velocity. In this work,
we propose to extend this approach to the case of viscous shallow water equations linearized around a
nonzero velocity, hence considering the advection term. Beyond this generalization, this work is also a
first step to set up a Schwarz algorithm for nonlinear shallow water system. Besides, and as mentioned
above, it has been proved in [20] that under some assumptions we can use the algorithm developed
here to set up efficient multi-dimensional and multi-model Schwarz coupling algorithms.
This paper is organized as follows: in Section 2 we write the equations and study the well-posedness
of the system. Due to the similar mathematical nature of viscous shallow water equations and of
primitive equations of the ocean (the barotropic, i.e. vertically integrated, part of the primitive equa-
tions corresponds to the shallow water system with advection), we reuse in our work developments
presented in [1] (see also [19]) where the optimized Schwarz waveform relaxation method was applied
to the primitive equations. Let us mention however that the work in [1] largely uses the smallness
of the Rossby parameter, which is not the case here where we consider non-rotating equations (i.e.
neglecting the Coriolis force). In Section 3 we define the Schwarz waveform relaxation algorithm and
we write the perfectly absorbing boundary conditions. Then we show the difficulties that arise when
deriving approximate Dirichlet-to-Neumann operators from an asymptotic analysis. Finally we pro-
pose in Section 4 to approximate the Dirichlet-to-Neumann operators by constant values, which leads
to Robin-like boundary conditions. We study the well-posedness of the corresponding algorithm and
prove its convergence, which is also a novelty of this work in comparison with [1].

2. Well-posedness of linearized viscous shallow water equations

In order to derive efficient interface conditions for 2-D viscous shallow water equations (sections 3
and 4), we have first to write their linearized approximation and to prove the well-posedness of this
system.
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2.1. Linearized system

Let us consider the 2-D viscous shallow water equations:{
∂tu + (u.∇) u + g∇ζ − µ∆u = 0,
∂tζ + div ((H + ζ)u) + u.∇ζ = 0,

(x, y, t) in ω × R+. (2.1)

where ω is an open domain of R2, u = (u, v)T is the velocity, and ζ is the free surface anomaly w.r.t.
H, the surface height at rest. The total depth of the water column H + ζ is supposed to be small
w.r.t. the horizontal length scale (shallow water approximation), see Figure 2.1. We denote by g the
gravity acceleration and by µ the viscosity. This system of equations must of course be complemented
with initial and boundary conditions. Note that, since we are interested in river dynamics, we do not
consider here the Coriolis force, which must be taken into account in the case of ocean dynamics.

(x,y) 

z 

H 

z (x,y,t) 

Lc 

Figure 2.1. Computational 3-D domain where the shallow water approximation is performed.

Linearizing this system around U0 = (u0, v0)t and ζ0 = 0, and adding initial conditions, leads to:
∂tu + (U0.∇) u + g∇ζ − µ∆u = 0 in ω × R+, (2.2a)

∂tζ +H div u + U0.∇ζ = 0 in ω × R+, (2.2b)
u(., 0) = uini in ω, (2.2c)
ζ(., 0) = ζini in ω. (2.2d)

Note that this set of equations can be derived from the linearized hydrostatic Navier-Stokes equations
by assuming a shallow 3-D domain and considering a null bottom friction [8].
In the following, we will consider homogeneous boundary conditions for (2.2) on ∂ω (or when ‖(x, y)‖ →
∞ if ω is unbounded). This is actually not restrictive, since we will work with error fields, which do
satisfy this boundary condition.

2.2. Well-posedness

Let us now define a weak formulation of system (2.2) and prove its well-posedness. Since the proof is
quite similar to the one for the linearized primitive equations given in [1], we only give here the outline
and refer to [1] for more details.
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Note first that u is solution of a linear parabolic problem (2.2a)-(2.2c) with a source term depending on
ζ, and that ζ is solution of a linear transport equation (2.2b)-(2.2d) with a source term depending on
u. To prove the well-posedness of (2.2) we will thus first study the parabolic system and the transport
equation separately, and will then conclude by using fixed-point argument.
Let us first introduce the notion of weak solution for (2.2). In the sequel T denotes the length of the
time interval (0 < T ≤ ∞).

Definition 2.1. Let Xini = (uini, ζini) ∈ L2(ω,R2)× L2(ω). We say that

X = (u, ζ) ∈ L2(0, T ;H1(ω,R2))× L2(ω × (0, T ))

is a weak solution of (2.2) if
d

dt
(u,v)ω + ((U0.∇)u,v)ω + µ(∇u,∇v)ω = −g (∇ζ,v)ω ∀v ∈ H1(ω,R2, )

u(., 0) = uini in ω,
(2.3)

and 
d

dt
(ζ, χ)ω + (U0.∇ζ, χ)ω = −H (div u, χ)ω ∀χ ∈ L2(ω),

ζ(., 0) = ζini in ω,
(2.4)

where (., .)ω is the scalar product in ω.

The following well-posedness result is proven in Appendix A.

Proposition 2.2. Let Xini = (uini, ζini) ∈ L2(ω,R2) × L2(ω). There exists a unique weak solution
X = (u, ζ) of (2.2) in

(
C(0, T ;L2(ω,R2) ∩ L2(0, T ;H1(ω,R2))

)
×
(
L2(ω × (0, T )) ∩ C(0, T ;L2(ω))

)
.

3. Schwarz waveform relaxation algorithm with absorbing boundary conditions

3.1. Schwarz waveform relaxation algorithm

As explained in Section 1, our goal is to derive efficient boundary conditions for solving shallow water
equations with a Schwarz waveform relaxation algorithm. Let us split the computational domain ω
in two subdomains ω− and ω+. Since our ultimate goal is to couple different systems of equations
(corresponding to diverse regimes), these subdomains must not overlap (contrary to usual domain
decomposition problems, where the same system of equations is solved on several subdomains). We
thus define ω− and ω+ by ω = ω− ∪ ω+ = (R− × R) ∪

(
R+ × R

)
. Their interface is Γ = {0} × R.

Let LLSW be the set of operators corresponding to (2.2a)-(2.2b), X = (u, ζ) and Xini = (uini, ζini).
The (k + 1)th iteration of the Schwarz waveform relaxation algorithm reads:

LLSW
(
Xk+1
−

)
= 0 in ω− × (0, T ),

B−
(
Xk+1
−

)
= B−

(
Xk

+

)
on ΓT ,

Xk+1
− (., 0) = Xini

− in ω−,

and


LLSW

(
Xk+1

+

)
= 0 in ω+ × (0, T ),

B+
(
Xk+1

+

)
= B+

(
Xk+1
−

)
on ΓT ,

Xk+1
+ (., 0) = Xini

+ in ω+,

(3.1)

where ΓT = Γ × (0, T ) and B− and B+ are interface boundary operators to be defined later. These
operators must be chosen in order to ensure that the Schwarz algorithm converges, and that this
convergence is fast. In this section, our strategy to derive such efficient interface conditions is to rely
on so-called perfectly transparent (or perfectly absorbing) boundary conditions [3].
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3.2. Natural transmission conditions

In order to derive perfectly transparent boundary conditions in the next subsection, let us first write
the quantities that are naturally preserved through the interface Γ, which are also called natural
transmission conditions.

Proposition 3.1. The physical constraint through the interface Γ× R+ is the continuity of

(
µ∂xu− u0u− g

(
ζ
0

)
, u0ζ +H u

)
. (3.2)

Proof. This result is obtained from the variational formulation of (2.2). Let us consider v ∈ D(ω,R2).
Multiplying (2.2a) by v and integrating over ω leads to∫

ω
∂tu.v +

∫
ω

(U0.∇) u.v− µ
∫
ω

∆u.v + g

∫
ω
∇ζ.v = 0. (3.3)

Integrating by parts and using the fact that v has a compact support, (3.3) becomes:∫
ω
∂tu.v−

∫
ω

(U0.∇) v.u + µ

∫
ω
∇u : ∇v− g

∫
ω
ζ div v = 0. (3.4)

Since ω = ω− ∪ ω+, (3.3) also reads:∫
ω+
∂tu.v +

∫
ω+

(U0.∇) u.v− µ
∫
ω+

∆u.v + g

∫
ω+
∇ζ.v

+
∫
ω−
∂tu.v +

∫
ω−

(U0.∇) u.v− µ
∫
ω−

∆u.v + g

∫
ω−
∇ζ.v = 0.

Integrating by parts in each subdomain, this expression becomes:∫
ω+
∂tu+.v−

∫
ω+

(U0.∇) v.u+ +
∫

Γ
u0(u+.v)n+

1 +
∫

Γ
v0(u+.v)n+

2 + µ

∫
ω+
∇u+ : ∇v

−µ
∫

Γ
∂n+u+.v− g

∫
ω+
ζ div v + g

∫
Γ
ζ+
(
n+

1
n+

2

)
.v

+
∫
ω−
∂tu−.v−

∫
ω−

(U0.∇) v.u− +
∫

Γ
u0(u−.v)n−1 +

∫
Γ
v0(u−.v)n−2 + µ

∫
ω−
∇u− : ∇v

−µ
∫

Γ
∂n−u−.v− g

∫
ω−
ζ div v + g

∫
Γ
ζ−
(
n−1
n−2

)
.v

= 0.
where u+, u− and ζ+, ζ− denote the value of u and ζ on both sides of Γ, n+ = (n+

1 , n
+
2 )T and

n− = (n−1 , n
−
2 )T are the unit outward vectors normal to ω+ and ω− (n+ = −n− on Γ). Gathering the

terms on ω+ and ω− and subtracting (3.4) leads to:

∀v ∈ D(ω,R2)
∫

Γ
(u0u+n+

1 + v0u+n+
2 ).v− µ

∫
Γ
∂n+u+.v + g

∫
Γ
ζ+
(
n+

1
n+

2

)
.v

+
∫

Γ
(u0u−n−1 + v0u−n−2 ).v− µ

∫
Γ
∂n−u−.v + g

∫
Γ
ζ−
(
n−1
n−2

)
.v = 0.

Therefore the following equality on Γ holds:

−µ∂n+u+ + (u0u+n+
1 + v0u+n+

2 ) + gζ+
(
n+

1
n+

2

)
= µ∂n−u− − (u0u−n−1 + v0u−n−2 )− gζ−

(
n−1
n−2

)
.
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The interface Γ being {x = 0}, then n+ =
(
−1
0

)
and n− =

(
1
0

)
. Therefore the preceding rela-

tionship corresponds to the continuity through the interface Γ of the quantity µ∂xu− u0u− g
(
ζ
0

)
.

Working similarly with (2.2b) leads to the continuity of u0ζ +H u through Γ.

3.3. Perfectly transparent boundary conditions

Based on these naturally transmitted quantities, let us now define the so-called Dirichlet-to-Neumann
operators. We consider in the following the case u0 > 0. The case u0 < 0 can be tackled similarly.
Definition 3.2. Let Xb = (ub, ζb) be a Dirichlet data. The operator Su

− is defined by:
Su
− : (Γ× R+)3 −→ R2 (3.5)

(ub, ζb) 7−→
(
µ∂xu− u0u− g

(
ζ
0

))
|Γ×R+ (3.6)

where (u, ζ) is a solution of the homogeneous system LLSW = 0 on ω+ with a zero initial condition
and Dirichlet boundary condition (ub, ζb) on Γ× (0, T ).
Similarly the operators Su

+ and Sζ+ are defined by:(
Su

+,S
ζ
+

)
: (Γ× R+)3 −→ R2 × R (3.7)

(ub, ζb) 7−→
(
−µ∂xu + u0u + g

(
ζ
0

)
, u0ζ +H u

)
|Γ×R+ (3.8)

where (u, ζ) is a solution of the homogeneous system LLSW = 0 on ω− with a zero initial condition
and Dirichlet boundary condition ub on Γ× (0, T ). Note that we do not need to prescribe a boundary
condition for ζ as we supposed u0 > 0, see [1].

Thanks to this definition of Dirichlet-to-Neumann operators, we can depict perfectly transparent
boundary conditions and implement them in the Schwarz waveform relaxation algorithm.
Proposition 3.3. The Schwarz waveform relaxation algorithm using the optimal boundary conditions:

B−(u, ζ) = Btransp
− (u, ζ) = µ∂xu− u0u− g

(
ζ
0

)
− Su

−(u, ζ)

and

B+(u, ζ) = Btransp
+ (u, ζ) =

(
−µ∂xu + u0u + g

(
ζ
0

)
− Su

+(u, ζ) , u0ζ +Hu− Sζ+(u, ζ)
)

converges exactly after two iterations.
Proof. Let us define the errors X̃k

− = X|ω− −Xk
− and X̃k

+ = X|ω+ −Xk
+ at iteration k. They satisfy:

LLSW
(
X̃k+1
−

)
= 0 in ω−t ,

Btransp
−

(
X̃k+1
−

)
= Btransp

−

(
X̃k

+

)
on Γt,

X̃k+1
− (., 0) = 0 in ω−,

and


LLSW

(
X̃k+1

+

)
= 0 in ω+

t ,

Btransp
+

(
X̃k+1

+

)
= Btransp

+

(
X̃k+1
−

)
on Γt,

X̃k+1
+ (., 0) = 0 in ω+,

(3.9)
where Γt = Γ× (0, T ).
At iteration 1, the choice of X̃0

+ is random and nothing special happens. At iteration 2, the boundary
conditions vanish due to the definition of Su

−, Su
+ and Sζ+. The errors X̃2

− and X̃2
+ are thus equal to

zero, since they are solutions of (3.9) with zero right hand sides.
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Let us now exhibit an analytical expression for these optimal boundary conditions. The expression
for Sζ+ is obvious: Sζ+(ub, ζb) = u0ζ + Hu. However, as we will see later, Su

+ and Su
− are non local

operators, both in time and space, and thus are not tractable for actual computations. Therefore we
will have to derive local approximations (subsection 3.4), for instance by performing Taylor expansion
w.r.t. small parameters. That is why we have first to write the dimensionless form of (2.2), to make
such small parameters appear clearly. Let us introduce the dimensionless variables and quantities:

(x, y) = Lc(x̃, ỹ), t = Lc
Uc
t̃, u = Ucũ, ζ = Hζ̃

and
ν = 1

Re = µ

LcUc
, Fr = Uc√

gH

where Lc is a characteristic horizontal length, Uc is a characteristic velocity, and Re and Fr denote
respectively the Reynolds number and the Froude number. The dimensionless system corresponding
to (2.2a)-(2.2b) reads:

∂t̃ũ +
(
Ũ0.∇̃

)
ũ + 1

Fr2
∇̃ζ̃ − ν∆̃ũ = 0 in ω̃ × R+, (3.10a)

∂t̃ζ̃ + d̃iv ũ + Ũ0.∇̃ζ̃ = 0 in ω̃ × R+. (3.10b)

For the sake of simplicity, we will drop the tilde symbols in the following. Computing the Laplace-
Fourier transform (Laplace in time, Fourier in the direction normal to Γ, i.e. the y direction) of (3.10a)-
(3.10b) with zero initial conditions leads to:

−ν∂2
xû + u0∂xû +

{
s+ iηv0 + νη2

}
û + 1

Fr2

 ∂xζ̂

iηζ̂

 = 0,

u0∂xζ̂ + (s+ iηv0)ζ̂ + ∂xû+ iηv̂ = 0,

(3.11)

where s is the Laplace symbol, η is the Fourier symbol, and .̂ denotes the Laplace-Fourier transform.
Therefore, as in [9], [13] or [2], one can look for the solution of this system under the form X̂(x) =
(û(x), ζ̂(x))T = Φeλx. System (3.11) becomes

M(λ)Φ = 0 (3.12)

where

M(λ) =



P (λ) 0 λ

Fr2

0 P (λ) iη

Fr2

λ iη u0λ+ s+ iηv0


and P (λ) = −νλ2 + u0λ+ s+ νη2 + iηv0.

In order to find the nonzero solutions, one thus has to compute the roots of the determinant of
this linear system. The determinant of M(λ) is a polynomial of degree 5 and can be factorized as
det(M(λ)) = P (λ)Q(λ). It can be shown [9, 20] that the two roots of P (λ) satisfy Re(λ1) > 0 and
Re(λ2) < 0 (remind that u0 > 0). In the same way the three roots of Q(λ) satisfy Re(λ3) < 0,
Re(λ4) < 0 and Re(λ5) > 0. Note that in the particular case where u0 = v0 = 0, these roots coincide
as expected with the ones computed in [13].
Since X̂ must tend to zero when x tends to infinity, the roots to be considered in ω+ are λ2, λ3 and
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λ4, and the roots to be considered in ω− are λ1 and λ5. Therefore one can compute the exact formulas
for Ŝu

− and Ŝu
+:

Ŝu
− =


(iu0η

2 + isλ2 − ηλ2v0)(−u0 + νλ3 + νλ4)
D

N2

D

iu0η
2 + isλ2 − ηλ2v0

DFr2

ν(−η2ν + νλ2λ3 + νλ2λ4 − νλ3λ4 − u0λ2 − s− iηv0)ηλ2

D

N5

D

νη(η2 − λ2)
DFr2

 (3.13)

where

D = iνη2(λ2 − λ3 − λ4) + iνλ2λ3λ4 + iu0η
2 + isλ2 − ηλ2v0

N2 = −νη [−νη2(λ2 − λ3 − λ4)− νλ2λ3λ4 + u0λ3λ4 − sλ2 + sλ3 + sλ4
−iηλ2v0 + iηv0λ3 + iηv0λ4]

N5 = −[iν2η4 − iν2η2λ2
2 + iν2η2λ3λ4 − iν2λ2

2λ3λ4 + iνη2u0(λ2 − λ3 − λ4) + iνu0λ2λ3λ4
+ iνη2s+ iη2u2

0 − iνsλ2
2 + isu0λ2 − νη3v0 + νηv0λ

2
2 − ηλ2u0v0]

and

Ŝu
+ =


νλ1(λ2

5 − η2)
η2 − λ1λ5

+ u0
iνηλ5(λ5 − λ1)
η2 − λ1λ5

1
Fr2

iνηλ1(λ5 − λ1)
η2 − λ1λ5

νλ5(λ2
1 − η2)

η2 − λ1λ5
+ u0 0

 . (3.14)

The analytical expressions for Su
− and Su

+ are the inverse Laplace-Fourier transforms of Ŝu
− and Ŝu

+.
They are however obviously very complex and involve global integrals in time and space. Therefore
the perfectly transparent operators Btransp

− and Btransp
+ are non local operators, both in time and space,

hence not tractable for actual applications. The remaining step is thus now to derive approximations of
these operators leading to boundary conditions that are both local and efficient in terms of convergence
speed.

3.4. Approximation of the perfectly transparent operators

As mentioned previously, a way to derive such approximations consists in computing Taylor expansions
of the Laplace-Fourier transform of the transparent operators w.r.t. small parameters. This is the
case for instance for 3D primitive equations in the context of oceanic circulation ([1], expansion
w.r.t. the Rossby number), for 2D Navier-Stokes equations ([9], expansion w.r.t. ν), or for shallow
water equations linearized around a zero velocity ([3], expansion w.r.t. s/η in the inviscid case; [13],
expansion w.r.t. ν in the viscous case). In the present context of river dynamics, the aspect ratio is
small: ε = H/Lc � 1. Moreover the viscosity coefficient is weak, and we can assume that ν = ν0ε, with
ν0 ≤ O(1). As can be seen in other references in the literature (see e.g. [8]), this scaling is necessary
to recover viscous shallow water equations ; we will also use this assumption in the approximation of
operators Ŝu

− and Ŝu
+ below.

Proposition 3.4. If u0 < 1/Fr, then the operator Ŝu
+ reads

Ŝu
+ =

 u0 0 1
Fr2

0 u0 0

+O(ε). (3.15)
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Indeed, in the case where u0 < 1/Fr, we can show (see Appendix B) that λ1 and λ5 are O(1) when
ε is small. Hence (3.15) directly follows from (3.14).

Proposition 3.5. If u0 > 1/Fr, then the operator Ŝu
− reads

Ŝu
− =

 −u0 0 1
Fr2

0 −u0 0

+O(ε). (3.16)

The reasoning is similar to the previous one but in this case, λ2, λ3 and λ4 are O(1), hence (3.16)
directly follows from (3.13) and the expression of D for small ε.

Remark 3.6. In the case where u0 < 1/Fr (resp. u0 > 1/Fr) the first order expansion w.r.t. ε of
Ŝu
− (resp. Ŝu

+) is not as simple as for Ŝu
+ (resp. Ŝu

−). We provide in Appendix B the computations
for the case u0 < 1/Fr (the other case is similar). An additional hypothesis is thus required to get a
local operator. For instance, a first order expansion w.r.t. η (i.e. for small incidence, as proposed for
example in [9]) leads to the simplified operator

Ŝu
− =

 −
1
Fr

0 u0
Fr

0 −u0 0

+O(ε, η). (3.17)

Remark 3.7. For the sake of asymptotic analysis, we had to use dimensionless equations in the above
computations. Going back to original equations, the local approximations of Ŝu

+ and Ŝu
− corresponding

to (3.15) and (3.17) (case where ũ0 < 1/Fr, i.e. u0 <
√
gH) thus read:

Ŝapp+ =
(
u0 0 g
0 u0 0

)
i.e. Ŝapp+ (u, v, ζ) =

(
u0 u+ g ζ
u0 v

)
(3.18)

and

Ŝapp− =

 −√g H 0
√
g

H
0 −u0 0

 i.e. Ŝapp− (u, v, ζ) =

 −√g H u+ u0

√
g

H
ζ

−u0 v

 (3.19)

while (3.16) (case where ũ0 > 1/Fr, i.e. u0 >
√
gH) becomes

Ŝapp− =
(
−u0 0 g

0 −u0 0

)
i.e. Ŝapp− (u, v, ζ) =

(
−u0 u+ g ζ
−u0 v

)
. (3.20)

4. Schwarz waveform relaxation algorithm with Robin boundary conditions

An alternative approach for deriving interface conditions, leading to much simpler calculations, consists
in approximating the Dirichlet-to-Neumann operators Su

− and Su
+ by linear functions, thus leading to

Robin-like boundary conditions, see [5, 12]. Such conditions make use of free parameters, that can be
tuned in order to optimize the convergence rate of the Schwarz algorithm. In the most general case, Su

−
and Su

+ would thus be approximated by two 3× 2 matrices Sapp− and Sapp+ , with constant coefficients.
However optimizing the convergence rate w.r.t. 12 free parameters is of course out of reach, and the
number of degrees of freedom must be significantly reduced. One classical approach in such a case
consists in mimicking some properties of the perfectly transparent operators. However, due to the
complexity of the expressions (3.13) and (3.14), it seems quite difficult to suppress more than three
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degrees of freedom without additional hypotheses. There is indeed no obvious relationships between
the coefficients of Su

−, while the expression of Su
+ leads to

Sapp+ =
(
α1 + u0 α2α3 g
α2 α1α3 + u0 0

)
where α1, α2, α3 are still to be fixed.
A much more drastic approach consists in fixing the number of free parameters to a low value, and
to propose corresponding expressions for Sapp− and Sapp+ . For instance, we present in the following the
most drastic choice, which consists in keeping only one free parameter.

Due to the study of the well-posedness of the system (that will be detailed later in this section),
the following Robin boundary conditions are proposed:

B− (u, ζ) =


µ
∂u

∂x
− gζ + (λ− u0)

2 u

µ
∂v

∂x
+ (λ− u0)

2 v

 , B+ (u, ζ) =



−µ∂u
∂x

+ gζ + (λ+ u0)
2 u

−µ∂v
∂x

+ (λ+ u0)
2 v

u0ζ


(4.1)

where λ is a positive constant to be determined.
This corresponds to

Sapp− = u0 + λ

2

(
−1 0 0
0 −1 0

)
and Sapp+ = u0 − λ

2

(
1 0 0
0 1 0

)
.

Note that choosing λ = u0 in the case u0 >
√
gH makes Sapp− correspond to (3.20) for the velocity

variable (asymptotic case µ→ 0). Such a value could be an initial choice for the optimization process.
Similarly, in the case u0 <

√
gH, it would be natural to start with λ = −u0 but we cannot ensure

the well-posedness and/or convergence of the iterative process (see proofs below). Several values for
λ could be tested, such as λ = u0 or a small (but positive) value.

In the following, B+ is splitted as B+ = (Bu
+,B

ζ
+)T with

Bu
+ (u, ζ) = −µ∂u

∂x
+ g

(
ζ
0

)
+ (λ+ u0)

2 u and Bζ+ (u, ζ) = u0ζ (4.2)

and the following relations hold:
Bu

+ (u, ζ) + B− (u, ζ) = λu, (4.3)

Bu
+ (u, ζ)− B− (u, ζ) = 2

(
−µ∂u

∂x
+ 1

2u0u + g

(
ζ
0

))
. (4.4)

Note that the expression of Bζ+ that is chosen here is a consequence of the simple expression for Sζ+:
if we define the errors X̃k

− = X|ω− −Xk
− and X̃k

+ = X|ω+ −Xk
+ at iteration k, we have:

Bζ,trans+ (X̃k
+) = u0ζ̃

k
+ +Hũk+ − S

ζ
+(ũk+, ζ̃k+).

Then due to the definition of Sζ+ and (3.9) we obtain:

Bζ,trans+ (X̃k
+) = u0ζ̃

k
+ +Hũk+ − u0ζ̃

k
− −Hũk−,

= u0ζ̃
k
+ +Hũk+ − u0ζ̃

k
− −Hũk+,

= u0ζ̃
k
+ − u0ζ̃

k
−,

= 0.
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which implies that u0ζ̃
k
+ = u0ζ̃

k
− at each iteration k.

Let us now prove the well-posedness of the Schwarz waveform relaxation algorithm with these Robin
boundary conditions, and then prove its convergence.

4.1. Well-posedness of the Schwarz waveform relaxation algorithm

The Schwarz waveform relaxation algorithm reads:

For u0 and ζ0
+ given and for all k ≥ 0:

• Solve the parabolic system in ω−:

∂tuk+1
− + (U0.∇) uk+1

− − µ∆uk+1
− = −g∇ζk+1

− in ω− × [0, T ], (4.5a)
B−(uk+1

− , ζk+1
− ) = B−(uk+, ζk+) on Γ× [0, T ], (4.5b)

uk+1
− (., 0) = uini− in ω−, (4.5c)

and the transport equation in ω−:

∂tζ
k+1
− + U0.∇ζk+1

− = −H div(uk+1
− ) in ω− × [0, T ], (4.6a)

ζk+1
− (., 0) = ζini− in ω−. (4.6b)

Note that, due to the assumption u0 > 0, we do not consider a boundary condition for the
transport equation on Γ.

• Solve the parabolic system in ω+:

∂tuk+1
+ + (U0.∇h) uk+1

+ − µ∆uk+1
+ = −g∇ζk+1

+ in ω+ × [0, T ], (4.7a)
Bu

+(uk+1
+ , ζk+1

+ ) = Bu
+(uk+1

− , ζk+1
− ) on Γ× [0, T ], (4.7b)

uk+1
+ (., 0) = uini+ in ω+, (4.7c)

and the transport equation in ω+:

∂tζ
k+1
+ + U0.∇ζk+1

+ = −H div(uk+1
+ ) in ω+ × [0, T ], (4.8a)

Bζ+
(
uk+1

+ , ζk+1
+

)
= Bζ+

(
uk+1
− , ζk+1

−

)
on Γ× [0, T ], (4.8b)

ζk+1
+ (., 0) = ζini+ in ω+. (4.8c)

The proof of the well-posedness of this algorithm is similar to what is done in Section 2 and in
Appendix A. Therefore, only the main results and definitions are given here.

4.1.1. Parabolic systems

To define the weak formulation of the parabolic systems for each subdomain, we take the scalar
product of equations (4.5a) and (4.7a) with a test function v ∈ D(ω±,R2). One then needs to
know ∂xuk± on the interface Γ in order to define the terms

(
Bu
±(uk±),v

)
Γ
. If we consider solutions

uk+1
± ∈ C(0, T, L2(ω±,R2))∩L2(0, T,H1(ω±,R2)), ∂xuk± are in L2(ω± × (0, T )) and we cannot define

their traces on Γ. The idea in [1] is to choose a first guess B0
+ in an adequate functional space and

then use relation (4.3) to define the terms
(
Bu
±(uk±),v

)
Γ
.
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Let us define Bk− = B−(uk, ζk−) and Bk+ = Bu
+(uk, ζk+).

In the sequel, we denote by WΓ the space H
1
2 (Γ,R2) and by W ′Γ its topological dual.

Definition 4.1. Let ζk+1
− ∈ L2(ω− × (0, T )) and ζk+1

+ ∈ L2(ω+ × (0, T )).

• For k = 0, let B0
+ ∈ L2(0, T,W ′Γ).

• For k ≥ 0, (4.5b) and (4.3) imply that Bk+1
− = −Bk+ + λuk+. Therefore uk+1

− is said to be a
weak solution of (4.5) if and only if for all v ∈ H1(ω−,R2)∫

ω−
∂tuk+1
− .v +

∫
ω−

(U0.∇) uk+1
− .v + µ

∫
ω−
∇uk+1
− : ∇v

+
∫

Γ
Bk+.v−

∫
Γ
λuk+.v +

∫
Γ

(λ− u0)
2 uk+1

− .v− g
∫
ω−
ζk+1
− div(v) = 0. (4.9)

• Once uk+1
− is known, (4.3) implies that Bk+1

+ = −Bk+1
− + λuk+1

− . Therefore uk+1
+ is said to be

a weak solution of (4.7) if and only if for all v ∈ H1(ω+,R2)∫
ω+
∂tuk+1

+ .v +
∫
ω+

(U0.∇) uk+1
+ .v + µ

∫
ω+
∇uk+1

+ : ∇v + µ

∫
ω+
∂zuk+1

+ .∂zv

+
∫

Γ
Bk+1
− .v−

∫
Γ
λuk+1
− .v +

∫
Γ

(λ+ u0)
2 uk+1

+ .v− g
∫
ω−
ζk+1

+ div(v) = 0. (4.10)

Then we have the following result:

Proposition 4.2. Let uini+ ∈ L2(ω+,R2), uini− ∈ L2(ω−,R2), Bk+1
− ∈ L2(0, T,W ′Γ)) and Bk+1

+ ∈
L2(0, T,W ′Γ)). Assume ζk+1

− ∈ L2(ω− × [0, T ]) ∩ C(0, T ;L2(ω−)) and ζk+1
+ ∈ L2(ω+ × (0, T )) ∩

C(0, T ;L2(ω))+. There exists:

• a unique solution uk+1
− of (4.5) in C(0, T, L2(ω−,R2)) ∩ L2(0, T,H1(ω−,R2)),

• a unique solution uk+1
+ of (4.7) in C(0, T, L2(ω+,R2)) ∩ L2(0, T,H1(ω+,R2)).

Moreover we have the following energy inequalities for all t ∈ [0, T ]

‖uk+1
− ‖2ω− + µ

∫ t

0
‖∇uk+1

− ‖2ω− +
∫ t

0

∫
Γ

λ

2 ‖u
k+1
− ‖2 ≤ ‖uini− ‖2ω− + C1

∫ t

0
‖ζk+1
− ‖2ω−

+ C2

∫ t

0
‖Bk+‖2Γ + C3

∫ t

0
‖uk+‖2Γ (4.11)

and

‖uk+1
+ ‖2ω+ + µ

∫ t

0
‖∇uk+1

+ ‖2ω+ +
∫ t

0

∫
Γ

λ

2 ‖u
k+1
+ ‖2 ≤ ‖uini+ ‖2ω+ + C ′1

∫ t

0
‖ζk+1

+ ‖2ω+

+ C ′2

∫ t

0
‖Bk+1
− ‖2Γ + C ′3

∫ t

0
‖uk+1
− ‖2Γ (4.12)

where C1, C2, C3, C ′1, C ′2 et C ′3 are positive constants.
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4.1.2. Transport equations

Let us now study the transport equations in each subdomain.
Definition 4.3.

• Let uk+1
− be given in L2(0, T ;H1(ω−,R2)) and ζini− in L2(ω−). The function ζk+1

− ∈ L2(ω− ×
(0, T )) is a weak solution of (4.6a) et (4.6b) if and only if

d

dt
(ζk+1
− , χ)ω− − (ζk+1

− ,U0.∇χ)ω− = −H (div uk+1
− , χ)ω− ∀χ ∈ D(ω−),

ζk+1
− (., 0) = ζini− in ω−.

(4.13)

• Let uk+1
+ be given in L2(0, T ;L2(ω+,R2)) and ζini+ ∈ L2(ω+). Once the solutions of (4.5)

and (4.13) are known, the transmission condition (4.8b) at the iteration k + 1 is:

Bζ+
(
Uk+1
h , ζk+1

+

)
= u0ζ

k+1
+ (0, .) = u0ζ

k+1
− (0, .). (4.14)

We denote in the sequel ζk+1
b = ζk+1

+ (0, .).
Assume that ζk+1

b ∈ L2(Γ× (0, T )), ζk+1
+ is a weak solution of (4.8) if and only if

d

dt
(ζk+1

+ , χ)ω+ − (ζk+1
+ ,U0.∇χ)ω+ − (u0ζ

k+1
b , χ)Γ = −H (div uk+1

+ , χ)ω+ ∀χ ∈ D(ω+),

ζk+1
+ (., 0) = ζini+ in ω+.

(4.15)

Therefore we have the following result:
Proposition 4.4.

• Let uk+1
− ∈ L2(0, T ;H1(ω−,R2)) and ζini− ∈ L2(ω−). There exists a unique solution ζk+1

− ∈
L2(ω− × [0, T ]) of (4.6a), (4.6b). This solution is obtained from the characteristic formula:

ζk+1
− (x, y, t) = ζini− (x− u0t, y − v0t)−H

∫ t

0

(
div uk+1

−

)
(x− u0s, y − v0s, t− s) ds. (4.16)

This solution is also in C(0, T ;L2(ω−)) ∩ C((−∞, 0]x;L2(Ry × (0, T ))) and for all x ≤ 0 and
for all t ∈ [0, T ], ζk+1

− satisfies the energy inequalities

‖ζk+1
− (., t)‖ω− ≤ ‖ζini− ‖ω− +H

∫ t

0
‖div uk+1

− ‖ω− ds (4.17)

and
‖ζk+1
− (x, .)‖Γt ≤

1
u0

(
‖ζini− ‖ω− +H

∫ t

0
‖ div uk+1

− ‖ω− ds
)
. (4.18)

• Let uk+1
+ ∈ L2(0, T,H1(ω+,R2)) fixed and ζini+ ∈ L2(ω+). There exists a unique solution

ζk+1
+ ∈ L2(ω+ × (0, T )) of (4.8a), (4.8b) and (4.8c). This solution can be written using the
characteristic formula:

ζk+1
+ (x, y, t) =

 ζini+ (x− u0t, y − v0t)−H
∫ t

0

(
div uk+1

+

)
(x− u0s, y − v0s, t− s) ds if x > u0t,

ζk+1
b (y − v0

u0
x, t− x

u0
)−H

∫ x/u0
0

(
div uk+1

+

)
(x− u0s, y − v0s, t− s) ds if x ≤ u0t.

(4.19)
This solution is also in C(0, T ;L2(ω+)) ∩ C([0,+∞)x;L2(Ry × (0, T ))) and for all x ≥ 0 and
for all t ∈ [0, T ], ζk+1

+ satisfies the energy inequalities:

‖ζk+1
+ (., t)‖ω+ ≤ ‖ζini+ ‖ω+ + u0‖ζk+1

b ‖Γ×(0,t) +H

∫ t

0
‖ div uk+1

+ ‖ω− ds, (4.20)
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‖ζk+1
+ (x, .)‖Γt ≤

1
u0

(
‖ζini+ ‖ω+ + u0‖ζk+1

b ‖Γ×(0,t) +H

∫ t

0
‖ div uk+1

+ ‖ω− ds
)
. (4.21)

Finally to conclude that the Schwarz algorithm is well-posed, one can use again the fixed point
theorem, as in Section 2 and Appendix A.

4.2. Convergence of the Schwarz waveform relaxation algorithm

The following result completes the theoretical study of the Schwarz waveform relaxation algorithm
with Robin boundary conditions.

Proposition 4.5. Let λ be a positive number.
If X0 = (u0

+, ζ
0
+) ∈

(
C(0, T ;L2(ω+,R2) ∩ L2(0, T ;H1(ω+,R2))

)
×
(
L2(ω+ × (0, T ))

)
then the Schwarz

algorithm (4.5)-(4.8) is well-posed and the sequences Xk+1
− =

(
uk+1
− , ζk+1

−

)
and Xk+1

+ =
(
uk+1

+ , ζk+1
+

)
converge respectively in(
C(0, T ;L2(ω−,R2) ∩ L2(0, T ;H1(ω−,R2))

)
×
(
L2(ω− × (0, T )) ∩ C(0, T ;L2(ω−))

)
and(

C(0, T ;L2(ω+,R2) ∩ L2(0, T ;H1(ω+,R2))
)
×
(
L2(ω+ × (0, T )) ∩ C(0, T ;L2(ω+))

)
.

Proof. The well-posedness of the algorithm was proved in the last paragraph. Let us now focus on
the convergence, proceeding as in [13]. Nevertheless, due to the fact that the equations are linearized
around a nonzero velocity U0, additional terms appear.
Let us introduce in the sequel the errors X̃k+1

− = X|ω− −Xk+1
− and X̃k+1

+ = X|ω+ −Xk+1
+ where X is

the solution of the shallow water system (2.2) throughout the domain ω = R2. Therefore the errors
are solutions of the systems:

LLSW
(
X̃k+1
−

)
= 0 in ω− × (0, T ),

Bext−
(
X̃k+1
−

)
= 0 on ∂ω−ext × (0, T ),

B−
(
X̃k+1
−

)
= B−

(
X̃k

+

)
on Γ× (0, T ),

X̃k+1
− (., 0) = 0 in ω−,

(4.22)

and 

LLSW
(
X̃k+1

+

)
= 0 in ω+ × (0, T ),

Bext+

(
X̃k+1

+

)
= 0 on ∂ω+

ext × (0, T ),
Bu

+

(
X̃k+1

+

)
= Bu

+

(
X̃k+1
−

)
on Γ× (0, T ),

Bζ+
(
X̃k+1

+

)
= Bζ+

(
X̃k+1
−

)
on Γ× (0, T ),

X̃k+1
+ (., 0) = 0 in ω + .

(4.23)

Multiplying the first equation of system (4.22) by (Hũk+1
− , gζ̃k+1

− )T and integrating on ω−, one gets:

H

∫
ω−
∂tũk+1
− .ũk+1

− +H

∫
ω−

(U0.∇)ũk+1
− .ũk+1

− − µH
∫
ω−

∆ũk+1
− .ũk+1

− + gH

∫
ω−
∇ζ̃k+1
− .ũk+1

− +

g

∫
ω−
ζ̃k+1
− ∂tζ̃

k+1
− + gH

∫
ω−
ζ̃k+1
− div ũk+1

− + g

∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

− = 0.

Integrating by parts and using the relation
∫
ω−

(U0.∇)ũk+1
− .ũk+1

− = u0
2 ‖ũ

k+1
− ‖2Γ leads to:

1
2
d

dt

(
H‖ũk+1

− ‖2ω− + g‖ζ̃k+1
− ‖2ω−

)
+ µH‖∇ũk+1

− ‖2ω− + g

∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

−

+
∫

Γ

(
−µH∂xũk+1

− + H

2 u0ũk+1
− + gH

(
ζ̃k+1
−
0

))
.ũk+1
− = 0.
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Due to (4.3) and (4.4) one has:(
−µ∂xũk+1

− + 1
2u0ũk+1

− + g

(
ζ̃k+1
−
0

))
.ũk+1
− = 1

2λ
(
(Bu,1

+ )2 + (Bu,2
+ )2 − (B1

−)2 − (B2
−)2

)
(ũk+1
− , ζ̃k+1

− )

where Bi− (i = 1, 2) denotes the ith coordinate of the vector B−(ũk+1
− , ζ̃k+1

− ) and Bu,i
+ (i = 1, 2) denotes

the ith coordinate of the vector Bu
+(ũk+1

− , ζ̃k+1
− ).

Therefore:
1
2
d

dt

(
H‖ũk+1

− ‖2ω− + g‖ζ̃k+1
− ‖2ω−

)
+ µH‖∇ũk+1

− ‖2ω− + H

2λ

∫
Γ

(
(Bu,1

+ )2 + (Bu,2
+ )2

)
(ũk+1
− , ζ̃k+1

− )

+ g

∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

− = H

2λ

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+1
− , ζ̃k+1

− ).

Using the boundary condition on Γ, one can modify the right hand side:
1
2
d

dt

(
H‖ũk+1

− ‖2ω− + g‖ζ̃k+1
− ‖2ω−

)
+ µH‖∇ũk+1

− ‖2ω− + H

2λ

∫
Γ

(
(Bu,1

+ )2 + (Bu,2
+ )2

)
(ũk+1
− , ζ̃k+1

− )

+ g

∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

− = H

2λ

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+, ζ̃k+)

and using

∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

− = −
∫
ω−

U0.∇ζ̃k+1
− ζ̃k+1

− +
∫

Γ
u0(ζ̃k+1

− )2

the relation reads:
1
2
d

dt

(
H‖ũk+1

− ‖2ω− + g‖ζ̃k+1
− ‖2ω−

)
+ µH‖∇ũk+1

− ‖2ω− + H

2λ

∫
Γ

(
(Bu,1

+ )2 + (Bu,2
+ )2

)
(ũk+1
− , ζ̃k+1

− )

+g

2

∫
Γ
u0(ζ̃k+1

− )2 = H

2λ

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+, ζ̃k+).

Integrating between 0 and t for t ∈ [0, T ] and using the initial conditions finally leads to:
H

2 ‖ũ
k+1
− ‖2ω− + g

2‖ζ̃
k+1
− ‖2ω− + µH

∫ t

0
‖∇ũk+1

− ‖2ω− + H

2λ

∫ t

0

∫
Γ

(
(Bu,1

+ )2 + (Bu,2
+ )2

)
(ũk+1
− , ζ̃k+1

− )

+g

2

∫ t

0

∫
Γ
u0(ζ̃k+1

− )2 = H

2λ

∫ t

0

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+, ζ̃k+). (4.24)

In the same way, the following relation holds in ω+:
H

2 ‖ũ
k+1
+ ‖2ω+ + g

2‖ζ̃
k+1
+ ‖2ω+ + µH

∫ t

0
‖∇ũk+1

+ ‖2ω+ + H

2λ

∫ t

0

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+1
+ , ζ̃k+1

+ )

−g2

∫ t

0

∫
Γ
u0(ζ̃k+1

+ )2 = H

2λ

∫ t

0

∫
Γ

(
(Bu,1

+ )2 + (Bu,2
+ )2

)
(ũk+1
− , ζ̃k+1

− ).

(4.25)
Summing (4.24) and (4.25) yields:

H

2 ‖ũ
k+1
− ‖2ω− + g

2‖ζ̃
k+1
− ‖2ω− + µH

∫ t

0
‖∇ũk+1

− ‖2ω− + H

2 ‖ũ
k+1
+ ‖2ω+ + g

2‖ζ̃
k+1
+ ‖2ω+

+µH
∫ t

0
‖∇ũk+1

+ ‖2ω+ + H

2λ

∫ t

0

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+1
+ , ζ̃k+1

+ )

= H

2λ

∫ t

0

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+, ζ̃k+). (4.26)
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Let us define the following:

Ek+1 = H

2 ‖ũ
k+1
− ‖2ω− + g

2‖ζ̃
k+1
− ‖2ω− + µH

∫ t

0
‖∇ũk+1

− ‖2ω−

+ H

2 ‖ũ
k+1
+ ‖2ω+ + g

2‖ζ̃
k+1
+ ‖2ω+ + µH

∫ t

0
‖∇hũk+1

+ ‖2ω+

and

F k+1 = H

2λ

∫ t

0

∫
Γ

(
(B1
−)2 + (B2

−)2
)

(ũk+1
+ , ζ̃k+1

+ ).

Then, summing relation (4.26) for all k ∈ {0, . . . , N}, where N > 1, one has:
N∑
k=0

Ek+1 + FN+1 = F 0.

This means that the positive series
∑N
k=0E

k+1 is convergent. The sequence (Ek)k thus converges to
0, which implies the convergence of X̃k+1

+ and X̃k+1
− in the functional spaces of proposition 4.5.

Both operators Bu
+ and B− being functions of the free parameter λ, one can then optimize the con-

vergence rate with respect to λ, see [5, 13]. However, the resulting optimization problem is complicated
and one has use a numerical method, see [1].
We will not provide in the present work a numerical validation of this algorithm. Further studies could
consider the numerical optimization of the convergence with respect to the free parameter λ, together
with the application of the algorithm to the nonlinear viscous shallow water system.

5. Conclusion

We presented in this article an extension of the Schwarz waveform relaxation method to the viscous
shallow water equations linearized around a nonzero velocity. We proved the well-posedness and the
convergence of the algorithm with zeroth-order approximate transmission conditions. This work can be
extended in several directions: higher order approximation of the transmission conditions, numerical
optimization of the convergence rate, and design of a Schwarz algorithm for the nonlinear shallow
water system.

Moreover, as indicated in the introduction of this paper, our long term goal is to design efficient
methods for coupling 1D-2D shallow water models with 3D Navier-Stokes models. As a next step in
this direction, we intend to consider a 3D hydrostatic Navier-Stokes model, and to couple it with a
shallow water model using the algorithm developed here. To do so, one has first to choose the location
of the interface between the two models. It must be chosen in a region where both models are relevant,
which implies that it must be within the shallow water regime area, not too close to the full 3D regime
area. One has then to supplement each of the two models with adequate boundary conditions on the
interface. The work presented in this paper provides a candidate for the shallow water part, and one
should consider the boundary conditions provided in [1] for the 3D hydrostatic equations. However,
because of the different dimensions of the two models, expansion and reduction operators have also to
be introduced in the interface conditions to be able to pass information back and forth from 2D (or
1D) to 3D. Such operators, which must satisfy some physical constraints such as mass conservation,
can be defined in several ways (this illustrates the fact that there is not a unique solution to a coupling
problem between models with different dimensions). To choose these operators, we will rely on the
methodology implemented in [21]. Finally, the convergence rate of the Schwarz coupling algorithm
will have to be optimized, typically by tuning free parameters like those occurring in Robin interface
conditions.
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Appendix A.

We provide here the technical details inspired from [1] to prove Proposition 2.2. In the sequel we shall
denote by (2.2)u the equations (2.2a)-(2.2c) for u (with a given ζ), and by (2.2)ζ the equations (2.2b)-
(2.2d) for ζ (with a given u).

A.1. Well-posedness of the parabolic system

Let us first study the parabolic system (2.2)u, assuming that ζ is a given data.

Proposition A.1. Let uini ∈ L2(ω,R2) and ζ ∈ L2(ω × (0, T )). Then there exists a unique weak
solution u ∈ C(0, T ;L2(ω)) ∩ L2(0, T ;H1(ω,R2)) of (2.2)u. Moreover we have the following energy
inequality:

‖u‖2ω + µ

∫ t

0
‖∇u‖2ω ≤ C

∫ t

0
‖ζ‖2ω + ‖uini‖2ω, ∀t ∈ [0, T ] (A.1)

where C > 0.

Proof. Multiplying (2.2a) by u and integrating over ω leads to:
1
2
d

dt
‖u‖2ω + µ ‖∇u‖2ω = g (ζ,div u)ω.

Applying the Cauchy-Schwarz inequality to (ζ,div u)ω and using the fact that 2ab ≤ αa2 + b2

α
for all

a, b, α > 0, this equation becomes:
1
2
d

dt
‖u‖2ω + µ ‖∇u‖2ω ≤ g

(
α

2 ‖ζ‖
2
ω + 1

2α‖ div u‖2ω
)
,

≤ g

(
α

2 ‖ζ‖
2
ω + 1

α
‖∇u‖2ω

)
.

Choosing α such that 2g
α

= µ and integrating in time, one gets:

1
2‖u‖

2
ω + µ

2

∫ t

0
‖∇u‖2ω ≤

g2

µ

∫ t

0
‖ζ‖2ω + 1

2‖u
ini‖2ω.

The proof of uniqueness comes then straightforwardly from this energy inequality, while the proof of
existence can be obtained using the Galerkin method (i.e. finding a weak solution of (2.2)u in a space
of finite dimension N and making N tends to infinity) and this inequality.
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A.2. Well-posedness of the transport equation

Let us now study equations (2.2)ζ with a given value for u. Similarly to [1] we have the following
result:

Proposition A.2. Let u ∈ L2(0, T ;H1(ω,R2)) and ζini ∈ L2(ω). Then there exists a unique weak
solution ζ ∈ L2(ω × (0, T )) of (2.2)ζ . Moreover this solution is given by the characteristic formula:

ζ(x, y, t) = ζini(x− u0t, y − v0t)−H
∫ t

0
(div u) (x− u0s, y − v0s, t− s) ds, ∀t ∈ [0, T ]. (A.2)

This means that we have also ζ ∈ C(0, T ;L2(ω)) ∩ C(Rx;L2(Ry × (0, T ))) and for all t ∈ [0, T ] this
solution satisfies the energy inequalities:

‖ζ(., t)‖ω ≤ ‖ζini‖ω +H

∫ t

0
‖div u‖ω ds (A.3)

and

‖ζ(x, .)‖Γx,t ≤
1
u0

(
‖ζini‖ω +H

∫ t

0
‖ div u‖ω ds

)
(A.4)

where Rx and Ry denote the sets of real numbers with respect to the variables x and y respectively and
Γx,t = {x} ×Ry × (0, T ).

Proof. The proof for the existence of a solution ζ to (2.2)ζ is classic: if ζ satisfies (A.2) and if div(u)
and ζini are smooth enough then ζ is a solution of (2.2)ζ .
The uniqueness can be obtained from the characteristic formula (A.2). Let us suppose that u and ζini
vanish. Then we can deduce from (A.2) that ζ = 0 in ω × [0, T ].
Let us now prove the energy inequality (A.3).
The characteristic formula (A.2) implies that

‖ζ‖ω ≤ ‖ζini‖ω +H

∥∥∥∥∫ t

0
div u ds

∥∥∥∥
ω
.

Then, using the Minkowski’s integral inequality, the energy estimation (A.3) follows.

A.3. Well-posedness of the linearized shallow water system

Finally, to prove the well-posedness of the weak form of the linearized viscous shallow water equa-
tions (2.2), we will use a fixed point argument.

Proposition A.3. Let Xini = (uini, ζini) ∈ L2(ω,R2) × L2(ω). There exists a unique weak solution
X = (u, ζ) of (2.2) in

(
C(0, T ;L2(ω,R2) ∩ L2(0, T ;H1(ω,R2))

)
×
(
L2(ω × (0, T )) ∩ C(0, T ;L2(ω))

)
.

Proof. As in [1], given an initial condition Xini, we introduce the following applications:
S1 : L2(ω × (0, T )) ∩ C(0, T ;L2(ω)) −→ C(0, T ;L2(ω,R2) ∩ L2(0, T ;H1(ω,R2))

ζ 7−→ u solution of (2.2a)
and

S2 : C(0, T ;L2(ω,R2) ∩ L2(0, T ;H1(ω,R2)) −→ L2(ω × (0, T )) ∩ C(0, T ;L2(ω))
u 7−→ ζ solution of (2.2b).

Let us denote by ET the functional space:
ET =

(
C(0, T ;L2(ω,R2) ∩ L2(0, T ;H1(ω,R2))

)
×
(
L2(ω × (0, T )) ∩ C(0, T ;L2(ω))

)
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Then X is a weak solution of (2.2) if and only if X is a fixed point of the mapping:
T : ET −→ ET
(u, ζ) 7−→ (S1(ζ),S2(u)).

In order to prove the existence of such a fixed point, let us define X1 = (u1, ζ1), X2 = (u2, ζ2) ∈ ET .
By linearity, S1(ζ1)− S1(ζ2) satisfies (2.2a) with a null initial condition. The energy inequality (A.1)
implies, for all t ∈ (0, T ):

‖S1(ζ1)− S1(ζ2)‖2ω + µ

∫ t

0
‖∇(S1(ζ1)− S1(ζ2))‖2ω ≤ C

∫ t

0
‖ζ1 − ζ2‖2ω,

≤ Ct sup
s∈[0,t]

‖ζ1 − ζ2‖2ω(s),

where C > 0.
In the same manner, we deduce from (A.3) and using the Cauchy Schwarz inequality:

‖S2(u1)− S2(u2)‖2ω(t) ≤ 2tH2
∫ t

0
‖∇(u1 − u2)‖2ω(s)ds.

These two inequalities imply that for all T ′ ∈ (0, T ] (with T ′ small enough), the application T is
strictly contracting in ET ′ . One has thus simply to repeat this argument on the intervals [T ′, 2T ′],
[2T ′, 3T ′], etc.

Appendix B.

In Section 3.3 we are interested in the zeros of det(M) where M is:

M(λ) =



P (λ) 0 λ

Fr2

0 P (λ) iη

Fr2

λ iη u0λ+ s+ iηv0


with P (λ) = −νλ2 + u0λ+ s+ νη2 + iηv0.

Computing its determinant, we have det(M(λ)) = P (λ)Q(λ), where

Q(λ) = −u0νλ
3 +

(
u2

0 − (s+ iηv0)ν − 1
Fr2

)
λ2 +

(
2(s+ iηv0)u0 + νη2u0

)
λ+

η2

Fr2 + (s+ iηv0)(s+ iηv0 + νη2).

Let us define λ1 and λ2 the zeros of P , and λ3, λ4 and λ5 those of Q. Regarding Q, it can be shown
(see [20]) that 2 roots have a nonpositive real part (let call them λ3 and λ4) and the last one λ5 has
a nonnegative real part. We are now interested in the asymptotics ε� 1, and recall that ν = ν0 ε.
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Case where u0 < 1/Fr. In this situation, the five roots read:

λ1 = u0
ν0ε

+ s+ iηv0
u0

+O(ε),

λ2 = −s+ iηv0
u0

+O(ε),

λ3 = −3a1
ε

+ b1 − 3a1a2
a1

+O(ε),

λ4 = −
3b1 +

√
9b21 − 12a1c1

6a1
+O(ε),

λ5 =
−3b1 +

√
9b21 − 12a1c1

6a1
+O(ε),

where a1 =
1
Fr2 − u2

0
3u0ν0

, a2 = (s+ iηv0)
3u0

, b1 = −2(s+ iηv0)
3ν0

and c1 = −
η2

Fr2 + (s+ iηv0)2

u0ν0
, see [20].

In this case, we have λ1 = O(1/ε) and λ3 = O(1/ε) while the other roots are O(1).

At order 1 in ε, the operator Ŝu
+ has the simple expression (3.15), but the operator Ŝu

− reads:

Ŝu
− =


iη2u2

0−is
2+2ηv0s+iη2v2

0
isα0−ηv0α0−iu0η2 , −ηsu0+iη2u0v0−u2

0ηα0
isα0−ηv0α0−iu0η2 ,

−(iη2u2
0−is

2+2ηv0s+iη2v2
0)u0

isα0−ηv0α0−iu0η2 ,

0 −u0 0

+O(ε)

where
α0 =

√
−η2u2

0Fr
2 + η2 + s2Fr2 + 2isηv0Fr2 − η2v2

0Fr
2.

It is thus still fully non local, and far from tractable in actual applications.

Case where u0 > 1/Fr. Here, the five roots read:

λ1 = u0
ν0ε

+ s+ iηv0
u0

+O(ε),

λ2 = −s+ iηv0
u0

+O(ε),

λ3 =
−3b1 +

√
9b21 − 12a1c1

6a1
+O(ε),

λ4 = −
3b1 +

√
9b21 − 12a1c1

6a1
+O(ε),

λ5 = −3a1
ε

+ b1 − 3a1a2
a1

+O(ε).

In that case, we have λ1 = O(1/ε) and λ5 = O(1/ε), while the other roots are O(1).
At order 1 in ε, the operator Ŝu

− has the simple expression (3.16), but the expression of operator Ŝu
+

remains very complex and non local.
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